328 research outputs found

    Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size.

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.Thiswork was supported by the Natural Environment ResearchCouncil (grant no. NE/G017 24/1), the Czech Science Fou nda-tion (grant no. P501/12/G090), the AVCR (grant no.RVO:60077344) and a Beatriu de Pinos postdoctoral fellowshipto J.P. (grant no. 2011-A-00292; Catalan Government-E.U. 7thF.P.)

    Differentiation of Human Induced Pluripotent Stem Cells into Keratinocytes

    Get PDF
    Investigating basic biological mechanisms underlying human diseases relies on the availability of sufficient quantities of patient cells. As most primary somatic cells have a limited lifespan, obtaining sufficient material for biological studies has been a challenge. The development of induced pluripotent stem cell (iPSC) technology has been a game changer, especially in the field of rare genetic disorders. iPSC are essentially immortal, can be stored indefinitely, and can thus be used to generate defined somatic cells in unlimited quantities. Further, the availability of genome editing technologies, such as CRISPR/CAS, has provided us with the opportunity to create “designer� iPSC lines with defined genetic characteristics. A major advancement in biological research stems from the development of methods to direct iPSC differentiation into defined cell types. In this article, we provide the basic protocol for the generation of human iPSC-derived keratinocytes (iPSC-K). These cells have the characteristics of basal epidermal keratinocytes and represent a tool for the investigation of normal epidermal biology, as well as genetic and acquired skin disorders. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.Wiley Open Access Accoun

    Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma

    Get PDF
    Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation, we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. It may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike

    A randomized placebo-controlled trial of methotrexate in psoriatic arthritis.

    Get PDF
    OBJECTIVE: MTX is widely used to treat synovitis in PsA without supporting trial evidence. The aim of our study was to test the value of MTX in the first large randomized placebo-controlled trial (RCT) in PsA. METHODS: A 6-month double-blind RCT compared MTX (15 mg/week) with placebo in active PsA. The primary outcome was PsA response criteria (PsARC). Other outcomes included ACR20, DAS-28 and their individual components. Missing data were imputed using multiple imputation methods. Treatments were compared using logistic regression analysis (adjusted for age, sex, disease duration and, where appropriate, individual baseline scores). RESULTS: Four hundred and sixty-two patients were screened and 221 recruited. One hundred and nine patients received MTX and 112 received placebo. Forty-four patients were lost to follow-up (21 MTX, 23 placebo). Twenty-six patients discontinued treatment (14 MTX, 12 placebo). Comparing MTX with placebo in all randomized patients at 6 months showed no significant effect on PsARC [odds ratio (OR) 1.77, 95% CI 0.97, 3.23], ACR20 (OR 2.00, 95% CI 0.65, 6.22) or DAS-28 (OR 1.70, 95% CI 0.90, 3.17). There were also no significant treatment effects on tender and swollen joint counts, ESR, CRP, HAQ and pain. The only benefits of MTX were reductions in patient and assessor global scores and skin scores at 6 months (P = 0.03, P < 0.001 and P = 0.02, respectively). There were no unexpected adverse events. CONCLUSIONS: This trial of active PsA found no evidence for MTX improving synovitis and consequently raises questions about its classification as a disease-modifying drug in PsA. Trial registration. Current Controlled Trials, www.controlled-trials.com, ISRCTN:54376151

    Polynomial algorithms for the Maximal Pairing Problem: efficient phylogenetic targeting on arbitrary trees

    Get PDF
    Background: The Maximal Pairing Problem (MPP) is the prototype of a class of combinatorial optimization problems that are of considerable interest in bioinformatics: Given an arbitrary phylogenetic tree T and weights ωxy for the paths between any two pairs of leaves (x, y), what is the collection of edge-disjoint paths between pairs of leaves that maximizes the total weight? Special cases of the MPP for binary trees and equal weights have been described previously; algorithms to solve the general MPP are still missing, however. Results: We describe a relatively simple dynamic programming algorithm for the special case of binary trees. We then show that the general case of multifurcating trees can be treated by interleaving solutions to certain auxiliary Maximum Weighted Matching problems with an extension of this dynamic programming approach, resulting in an overall polynomial-time solution of complexity (n^4 log n) w.r.t. the number n of leaves. The source code of a C implementation can be obtained under the GNU Public License from http://www.bioinf.uni-leipzig.de/Software/Targeting. For binary trees, we furthermore discuss several constrained variants of the MPP as well as a partition function approach to the probabilistic version of the MPP. Conclusions: The algorithms introduced here make it possible to solve the MPP also for large trees with high-degree vertices. This has practical relevance in the field of comparative phylogenetics and, for example, in the context of phylogenetic targeting, i.e., data collection with resource limitations.Human Evolutionary Biolog
    corecore