58 research outputs found

    Platelet Lysate Inhibits NF-ÎșB Activation and Induces Proliferation and an Alert State in Quiescent Human Umbilical Vein Endothelial Cells Retaining Their Differentiation Capability.

    Get PDF
    open6Injured blood vessel repair and blood circulation re-establishment are crucial events for tissue repair. We investigated in primary cultures of human umbilical vein endothelial cells (HUVEC), the eects of platelet lysate (PL), a cocktail of factors released by activated platelets following blood vessel disruption and involved in the wound-healing process triggering. PL exerted a protective eect on HUVEC in an inflammatory milieu by inhibiting IL-1-activated NF-B pathway and by inducing the secretion of PGE2, a pro-resolving molecule in the wound microenvironment. Moreover, PL enhanced HUVEC proliferation, without aecting their capability of forming tube-like structures on matrigel, and activated resting quiescent cells to re-enter cell cycle. In agreement with these findings, proliferation-related pathways Akt and ERK1/2 were activated. The expression of the cell-cycle activator Cyclin D1 was also enhanced, as well as the expression of the High Mobility Group Box-1 (HMGB1), a protein of the alarmin group involved in tissue homeostasis, repair, and remodeling. These in vitro data suggest a possible in vivo contribution of PL to new vessel formation after a wound by activation of cells resident in vessel walls. Our biochemical study provides a rationale for the clinical use of PL in the treatment of wound healing-related pathologies.openRomaldini A, Ulivi V, Nardini M, Mastrogiacomo M,Cancedda R, Descalzi FRomaldini, A; Ulivi, V; Nardini, M; Mastrogiacomo, M; Cancedda, R; Descalzi,

    Platelet Lysate Activates Human Subcutaneous Adipose Tissue Cells by Promoting Cell Proliferation and Their Paracrine Activity Toward Epidermal Keratinocytes

    Get PDF
    Skin chronic wounds are non-healing ulcerative defects, which arise in association with a morbidity state, such as diabetes and vascular insufficiency or as the consequence of systemic factors including advanced age. Platelet Rich Plasma, a platelet-rich blood fraction, can significantly improve the healing of human skin chronic ulcers. Given that the subcutaneous adipose tissue is located beneath the skin and plays a role in the skin homeostasis, in this study, we investigated the in vitro response of human subcutaneous adipose tissue cells to platelet content in a model mimicking in vitro the in situ milieu of a deep skin injury. Considering that, at the wound site, plasma turn to serum, platelets are activated and inflammation occurs, human adipose-derived stromal cells (hASC) were cultured with Human Serum (HS) supplemented or not with Platelet Lysate (PL) and/or IL-1α. We observed that HS sustained hASC proliferation more efficiently than FBS and induced a spontaneous adipogenic differentiation in the cells. PL added to HS enhanced hASC proliferation, regardless the presence of IL-1α. In the presence of PL, hASC progressively lessened the adipogenic phenotype, possibly because the proliferation of less committed cells was induced. However, these cells resumed adipogenesis in permissive conditions. Accordingly, PL induced in quiescent cells activation of the proliferation-related pathways ERK, Akt, and STAT-3 and expression of Cyclin D1. Moreover, PL induced an early and transient increase of the pro-inflammatory response triggered by IL-1α, by inducing COX-2 expression and secretion of a large amount of PGE2, IL-6, and IL-8. Media conditioned by PL-stimulated hASC exerted a chemotactic activity on human keratinocytes and favored the healing of an in vitro scratch wound. In order to bridge the gap between in vitro results and possible in vivo events, the stimuli were also tested in ex vivo cultures of in toto human adipose tissue biopsies (hAT). PL induced cell proliferation in hAT and outgrowth of committed progenitor cells able to differentiate in permissive conditions. In conclusion, we report that the adipose tissue responds to the wound microenvironment by activating the proliferation of adipose tissue progenitor cells and promoting the release of factors favoring wound healing

    Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord

    Get PDF
    Defaults in vascular (VN) and neuronal networks of spinal cord are responsible for serious neurodegenerative pathologies. Because of inadequate investigation tools, the lacking knowledge of the complete fine structure of VN and neuronal systems is a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. We show that X-ray high-resolution phase-contrast tomography allows the simultaneous visualization of three-dimensional VN and neuronal systems of mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, with neither contrast agent nor a destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibers, axon-bundles and neuron soma. Our approach is a crucial tool for pre-clinical investigation of neurodegenerative pathologies and spinal-cord-injuries. In particular, it should be an optimal tool to resolve the entangled relationship between VN and neuronal system.Comment: 15 pages, 6 figure

    A Modified Rabbit Ulna Defect Model for Evaluating Periosteal Substitutes in Bone Engineering: A Pilot Study

    Get PDF
    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX\uae) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12\u201316 weeks, and bone regeneration was evaluated by radiography, computed microtomography (\ub5CT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORETEX\uae) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitut

    Transit Amplifying Cells (TACs): a still not fully understood cell population

    Get PDF
    Maintenance of tissue homeostasis and tissue regeneration after an insult are essential functions of adult stem cells (SCs). In adult tissues, SCs proliferate at a very slow rate within “stem cell niches”, but, during tissue development and regeneration, before giving rise to differentiated cells, they give rise to multipotent and highly proliferative cells, known as transit-amplifying cells (TACs). Although differences exist in diverse tissues, TACs are not only a transitory phase from SCs to post-mitotic cells, but they also actively control proliferation and number of their ancestor SCs and proliferation and differentiation of their progeny toward tissue specific functional cells. Autocrine signals and negative and positive feedback and feedforward paracrine signals play a major role in these controls. In the present review we will consider the generation and the role played by TACs during development and regeneration of lining epithelia characterized by a high turnover including epidermis and hair follicles, ocular epithelial surfaces, and intestinal mucosa. A comparison between these different tissues will be made. There are some genes and molecular pathways whose expression and activation are common to most TACs regardless their tissue of origin. These include, among others, Wnt, Notch, Hedgehog and BMP pathways. However, the response to these molecular signals can vary in TACs of different tissues. Secondly, we will consider cultured cells derived from tissues of mesodermal origin and widely adopted for cell therapy treatments. These include mesenchymal stem cells and dedifferentiated chondrocytes. The possible correlation between cell dedifferentiation and reversion to a transit amplifying cell stage will be discussed

    Allogeneic platelet-rich plasma affects monocyte differentiation to dendritic cells causing an anti-inflammatory microenvironment, putatively fostering wound healing

    No full text
    Autologous platelet-rich plasma (PRP) is used clinically to induce repair of different tissues through the release of bioactive molecules. In some patients, the production of efficient autologous PRP is unfeasible due to their compromised health. Allogeneic PRP mismatched for AB0 and Rh antigens was developed. The effect of allogeneic PRP on immune response should be defined to use it in clinical practice avoiding side effects. Thus, whether PRP affects the differentiation of peripheral blood monocytes to dendritic cells upon stimulation with granulocyte monocyte colony stimulating factor and interleukin-4 was investigated. Indeed, these cells are the main players of immune response and tissue repair. PRP inhibited the differentiation of monocytes to CD1a+dendritic cells and favoured the expansion of phagocytic CD163+CD206+fibrocyte-like cells. These cells produced interleukin-10 and prostaglandin-E2, but not interferon-\uce\ub3, upon stimulation with lipopolysaccharides. Moreover, they promoted the expansion of regulatory CD4+CD25+FoxP3+T cells upon allostimulation or antigen specific priming. Finally, the conditioned medium harvested from monocytes differentiated with PRP triggered a strong chemotactic effect on mesenchymal cells in both scratch and transwell migration assays. These results strongly suggest that allogeneic PRP can foster the differentiation of monocytes to a regulatory anti-inflammatory population, possibly favouring wound healing. Copyright \uc2\ua9 2016 John Wiley & Sons, Ltd
    • 

    corecore