64 research outputs found

    Arginine 447 Plays a Pivotal Role in Substrate Interactions in a Neuronal Glutamate Transporter

    Get PDF
    Glutamate transporters from the central nervous system play a crucial role in the clearance of the transmitter from the synaptic cleft. Glutamate is cotransported with sodium ions, and the electrogenic translocation cycle is completed by countertransport of potassium. Mutants that cannot interact with potassium are only capable of catalyzing electroneutral exchange. Here we identify a residue involved in controlling substrate recognition in the neuronal transporter EAAC-1 that transports acidic amino acids as well as cysteine. When arginine 447, a residue conserved in all glutamate transporters, is replaced by cysteine, transport of glutamate or aspartate is abolished, but sodium-dependent cysteine transport is left intact. Analysis of other substitution mutants shows that the replacement of arginine rather than the introduced cysteine is responsible for the observed phenotype. In further contrast to wild type, acidic amino acids are unable to inhibit cysteine transport in R447C-EAAC-1, indicating that the selectivity change is manifested at the binding step. Electrophysiological analysis shows that in the mutant cysteine, transport has become electroneutral, and its interaction with the countertransported potassium is impaired. Thus arginine 447 plays a pivotal role in the sequential interaction of acidic amino acids and potassium with the transporter and, thereby, constitutes one of the molecular determinants of coupling their fluxes

    Functional Mimicry of a Human Immunodeficiency Virus Type 1 Coreceptor by a Neutralizing Monoclonal Antibody

    Get PDF
    Interaction of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein with the primary receptor, CD4, promotes binding to a chemokine receptor, either CCR5 or CXCR4. The chemokine receptor-binding site on gp120 elicits CD4-induced (CD4i) antibodies in some HIV-1-infected individuals. Like CCR5 itself, the CD4i antibody 412d exhibits a preference for CCR5-using HIV-1 strains and utilizes sulfated tyrosines to achieve binding to gp120. Here, we show that 412d binding requires the gp120 β19 strand and the base of the V3 loop, elements that are important for the binding of the CCR5 N terminus. Two gp120 residues in the V3 loop base determined 412d preference for CCR5-using HIV-1 strains. A chimeric molecule in which the 412d heavy-chain third complementarity-determining loop sequence replaces the CCR5 N terminus functioned as an efficient second receptor, selectively supporting the entry of CCR5-using HIV-1 strains. Sulfation of N-terminal tyrosines contributed to the function of this chimeric receptor. These results emphasize the close mimicry of the CCR5 N terminus by the gp120-interactive region of a naturally elicited CD4i antibody

    Improving the Quality and Quantity of HIV Data in the Middle East and North Africa: Key Challenges and Ways Forward

    Get PDF
    Although the HIV pandemic is witnessing a decline in the number of new infections in most regions of the world, the Middle East and North Africa (MENA) has a rapidly growing HIV problem. While generating HIV data has been consistently increasing since 2005, MENA’s contribution to the global HIV literature is just over 1% and the existing evidence often falls behind the academic standards. Several factors could be at play that contribute to the limited quantity and quality of HIV data in MENA. This editorial tries to explore and explain the barriers to collecting high-quality HIV data and generating precise estimates in MENA. These barriers include a number of logistic and socio-political challenges faced by researchers, public health officials, and policy-makers. Looking at successful regional HIV programs, we explore examples were policies have shifted and lessons could be learned in developing appropriate responses to HIV across the region

    Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein

    Get PDF
    The HIV-1 envelope glycoprotein (Env) mediates viral entry via conformational changes associated with binding the cell surface receptor (CD4) and coreceptor (CCR5/CXCR4), resulting in subsequent fusion of the viral and cellular membranes. While the gp120 Env surface subunit has been extensively studied for its role in viral entry and evasion of the host immune response, the gp41 transmembrane glycoprotein and its role in natural infection are less well characterized. Here, we identified a primary HIV-1 Env variant that consistently supports \u3e300% increased viral infectivity in the presence of autologous or heterologous HIV-positive plasma. However, in the absence of HIV-positive plasma, viruses with this Env exhibited reduced infectivity that was not due to decreased CD4 binding. Using Env chimeras and sequence analysis, we mapped this phenotype to a change Q563R, in the gp41 heptad repeat 1 (HR1) region. We demonstrate that Q563R reduces viral infection by disrupting formation of the gp41 six-helix bundle required for virus-cell membrane fusion. Intriguingly, antibodies that bind cluster I epitopes on gp41 overcome this inhibitory effect, restoring infectivity to wild-type levels. We further demonstrate that the Q563R change increases HIV-1 sensitivity to broadly neutralizing antibodies (bNAbs) targeting the gp41 membrane-proximal external region (MPER). In summary, we identify an HIV-1 Env variant with impaired infectivity whose Env functionality is restored through the binding of host antibodies. These data contribute to our understanding of gp41 residues involved in membrane fusion and identify a mechanism by which host factors can alleviate a viral defect
    • …
    corecore