4 research outputs found

    A compact and sustainable electronic module for silicon photomultipliers

    Full text link
    This article presents the development of a cost-effective and efficient electronic module for silicon photomultipliers (SiPM). The electronic module combines essential functionalities, such as a high voltage power supply, a preamplifier, and a signal comparator, into a compact circuit. A high voltage power supply with a range of 30 to 140 V provides a stable bias voltage with 0.01 V accuracy for the SiPMs, while a preamplifier with 40 gain and 250 MHz bandwidth enables signal amplification necessary to extract weak signals. The comparator converts an analogue signal (higher than 8 mV) into TTL (transistor-transistor logic), which makes it easy to process and analyze with digital devices such as microcontrollers or make it possible to send signals over long distances by a cable. The module has been tested using an LYSO scintillator and a SiPM called a micropixel avalanche photodiode (MAPD). It provides a more effective and efficient solution for reading out signals from SiPMs in a variety of applications, delivering reliable and accurate results in real-time.Comment: an article, 9 pages, 6 figure

    Portable neutron/gamma scintillation detector for status monitoring of accelerator-driven neutron source IREN

    Full text link
    Accelerator-driven system (ADS) facilities world-wide opens new opportunities for nuclear physics investigations, so that a high flux of neutrons through spallation reactions can be produced at these facilities. It is known that the measurement, continuous monitoring and optimization of the particle accelerator beam intensity are among the most important actions in the operation of such facilities. Considering this point of view, this paper presents a neutron/gamma counter based on a micropixel avalanche photodiode (MAPD) and a plastic scintillator that monitors the status of the accelerator-driven intense resonance neutron source (IREN) facility by measuring the neutron-gamma intensity in the target hall. The electronics of the modular neutron counter has been designed and developed, including a bias voltage source (up to 130 V), a preamplifier (36 gain) and discriminator (>10 mV) circuit. The last product of MAPD (operation voltage- 55 V, PDE- 33 %, total number of pixels- 136900) was used as a photon readout from a plastic scintillator. The sensitive area of MAPD was 3.7*3.7 mm2 and the size of the plastic scintillator 3.7*3.7*30 mm3. The measurement was carried out in the IREN target hall, where it was necessary to monitor not only high neutron fluxes, but also gamma quanta. The experimental results demonstrated a dependence between the count rate of the detector and the frequency of the accelerator, which ranges from 2 to 50 Hz.Comment: 8 pages, 7 figure
    corecore