23 research outputs found

    DNA Damage and Its Links to Neurodegeneration

    Get PDF
    The integrity of our genetic material is under constant attack from numerous endogenous and exogenous agents. The consequences of a defective DNA damage response are well studied in proliferating cells, especially with regards to the development of cancer, yet its precise roles in the nervous system are relatively poorly understood. Here we attempt to provide a comprehensive overview of the consequences of genomic instability in the nervous system. We highlight the neuropathology of congenital syndromes that result from mutations in DNA repair factors and underscore the importance of the DNA damage response in neural development. In addition, we describe the findings of recent studies, which reveal that a robust DNA damage response is also intimately connected to aging and the manifestation of age-related neurodegenerative disorders such as Alzheimer's disease and amyotrophic lateral sclerosis. Video Abstract: In this Review, Madabhushi etal. summarize the current state of knowledge about how DNA damage and changes to the DNA damage response in neurons might underlie neurodegenerative diseases

    The Roles of DNA Topoisomerase IIβ in Transcription

    No full text
    Type IIA topoisomerases allow DNA double helical strands to pass through each other by generating transient DNA double strand breaks βDSBs), and in so doing, resolve torsional strain that accumulates during transcription, DNA replication, chromosome condensation, chromosome segregation and recombination. Whereas most eukaryotes possess a single type IIA enzyme, vertebrates possess two distinct type IIA topoisomerases, Topo IIα and Topo IIβ. Although the roles of Topo IIα, especially in the context of chromosome condensation and segregation, have been well-studied, the roles of Topo IIβ are only beginning to be illuminated. This review begins with a summary of the initial studies surrounding the discovery and characterization of Topo IIβ and then focuses on the insights gained from more recent studies that have elaborated important functions for Topo IIβ in transcriptional regulation

    Emerging themes in neuronal activity-dependent gene expression.

    No full text
    In this review, we attempt to discuss emerging themes in the regulation of neuronal activity-regulated genes, focusing primarily on an important subset of immediate-early genes. We first discuss earlier studies that have illuminated the role of cis-acting elements within the promoters of immediate-early genes, the corresponding transcription factors that bind these elements, and the roles of major activity-regulated signaling pathways. However, our emphasis is on new studies that have revealed an important role for epigenetic and topological mechanisms, including enhancer-promoter interactions, enhancer RNAs (eRNAs), and activity-induced DNA breaks, that have emerged as important factors that govern the temporal dynamics of activity-induced gene transcription.112Nsciescopu

    Mapping catalytically engaged TOP2B in neurons reveals the principles of topoisomerase action within the genome

    No full text
    Summary: We trapped catalytically engaged topoisomerase IIβ (TOP2B) in covalent DNA cleavage complexes (TOP2Bccs) and mapped their positions genome-wide in cultured mouse cortical neurons. We report that TOP2Bcc distribution varies with both nucleosome and compartmental chromosome organization. While TOP2Bccs in gene bodies correlate with their level of transcription, highly expressed genes that lack the usually associated chromatin marks, such as H3K36me3, show reduced TOP2Bccs, suggesting that histone posttranslational modifications regulate TOP2B activity. Promoters with high RNA polymerase II occupancy show elevated TOP2B chromatin immunoprecipitation sequencing signals but low TOP2Bccs, indicating that TOP2B catalytic engagement is curtailed at active promoters. Surprisingly, either poisoning or inhibiting TOP2B increases nascent transcription at most genes and enhancers but reduces transcription within long genes. These effects are independent of transcript length and instead correlate with the presence of intragenic enhancers. Together, these results clarify how cells modulate the catalytic engagement of topoisomerases to affect transcription

    The Role of Epigenetic Mechanisms in the Regulation of Gene Expression in the Nervous System

    No full text
    Neuroepigenetics is a newly emerging field in neurobiology that addresses the epigenetic mechanism of gene expression regulation in various postmitotic neurons, both over time and in response to environmental stimuli. In addition to its fundamental contribution to our understanding of basic neuronal physiology, alterations in these neuroepigenetic mechanisms have been recently linked to numerous neurodevelopmental, psychiatric, and neurodegenerative disorders. This article provides a selective review of the role of DNA and histone modifications in neuronal signal-induced gene expression regulation, plasticity, and survival and how targeting these mechanisms could advance the development of future therapies. In addition, we discuss a recent discovery on how double-strand breaks of genomic DNA mediate the rapid induction of activity-dependent gene expression in neurons

    A protective factor for the ageing brain

    No full text

    SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons

    No full text
    Defects in DNA repair have been linked to cognitive decline with age and neurodegenerative disease, yet the mechanisms that protect neurons from genotoxic stress remain largely obscure. We sought to characterize the roles of the NAD[superscript +]-dependent deacetylase SIRT1 in the neuronal response to DNA double-strand breaks (DSBs). We found that SIRT1 was rapidly recruited to DSBs in postmitotic neurons, where it showed a synergistic relationship with ataxia telangiectasia mutated (ATM). SIRT1 recruitment to breaks was ATM dependent; however, SIRT1 also stimulated ATM autophosphorylation and activity and stabilized ATM at DSB sites. After DSB induction, SIRT1 also bound the neuroprotective class I histone deacetylase HDAC1. We found that SIRT1 deacetylated HDAC1 and stimulated its enzymatic activity, which was necessary for DSB repair through the nonhomologous end-joining pathway. HDAC1 mutations that mimic a constitutively acetylated state rendered neurons more susceptible to DNA damage, whereas pharmacological SIRT1 activators that promoted HDAC1 deacetylation also reduced DNA damage in two mouse models of neurodegeneration. We propose that SIRT1 is an apical transducer of the DSB response and that SIRT1 activation offers an important therapeutic avenue in neurodegeneration.National Institutes of Health (U.S.) (PO1 Grant AG27916)Howard Hughes Medical InstituteNeurodegeneration ConsortiumPaul F. Glenn Foundation (Award for Research in Biological Mechanisms of Aging)National Institutes of Health (U.S.) (Training Grant T32 GM007484)National Institutes of Health (U.S.) (Training Grant T32 MH081728

    Cortical neurons gradually attain a post-mitotic state

    No full text
    Once generated, neurons are thought to permanently exit the cell cycle and become irreversibly differentiated. However, neither the precise point at which this post-mitotic state is attained nor the extent of its irreversibility is clearly defined. Here we report that newly born neurons from the upper layers of the mouse cortex, despite initiating axon and dendrite elongation, continue to drive gene expression from the neural progenitor tubulin α1 promoter (Tα1p). These observations suggest an ambiguous post-mitotic neuronal state. Whole transcriptome analysis of sorted upper cortical neurons further revealed that neurons continue to express genes related to cell cycle progression long after mitotic exit until at least post-natal day 3 (P3). These genes are however down-regulated thereafter, associated with a concomitant up-regulation of tumor suppressors at P5. Interestingly, newly born neurons located in the cortical plate (CP) at embryonic day 18-19 (E18-E19) and P3 challenged with calcium influx are found in S/G2/M phases of the cell cycle, and still able to undergo division at E18-E19 but not at P3. At P5 however, calcium influx becomes neurotoxic and leads instead to neuronal loss. Our data delineate an unexpected flexibility of cell cycle control in early born neurons, and describe how neurons transit to a post-mitotic state.Cell Research advance online publication 21 June 2016; doi:10.1038/cr.2016.76
    corecore