39 research outputs found

    An Integrated Photocatalytic-Enzymatic System for the Reduction of CO2 to Methanol in Bio-Glycerol-Water

    Get PDF
    A hybrid enzymatic/photocatalytic approach for the conversion of CO2 into methanol is described. For the approach discussed here, the production of one mol of CH3OH from CO2 requires three enzymes and the consumption of three mol of NADH. Regeneration of the cofactor NADH from NAD+ was achieved by using visible-light-active, heterogeneous, TiO2-based photocatalysts. The efficiency of the regeneration process is enhanced by using a Rh(III)-complex for facilitating the electron and hydride transfer from the H-donor (water or a water–glycerol solution) to NAD+. This resulted in the production of 100 to 1000 mol of CH3OH from one mol of NADH, providing the possibility for practical application

    Nanomaterials as photocatalysts for the CO2 reduction to methanol in water

    No full text
    CO2 can be converted into methanol, through the intermediate steps of reduction to formic acid and formaldehyde using a triad of enzymes such as formate dehydrogenase (FatoDH), formaldehyde dehydrogenase (FaldDH) and alcohol dehydrogenase (ADH). In each reductive step one mole of NADH is oxidized to NAD+ that has to be converted back to NADH in order to make the process acceptable from an economic point of view. Such regeneration can be accomplished by chemical, electrochemical, photochemical or photoelectrochemical processes. We have recently shown[1] that the photosystems can be coupled with the three enzymes listed above for the reduction of CO2 to methanol, using glycerol as H-donor. New photocatalysts have been prepared, such as: transition metal sulphides and nonstoichiometric mixed sulphides, composites of metal oxides like Cu2O/TiO2. Here, we describe the behaviour of selected semiconductors and the working mechanism (electron injection in the conduction band or hole injection in the valence band) and show that they are interesting agents for the reduction of NAD+ and the regeneration of NADH
    corecore