85 research outputs found

    Bond excitations in the pseudogap phase of the Hubbard Model

    Full text link
    Using the dynamical cluster approximation, we calculate the correlation functions associated with the nearest neighbor bond operator which measure the z component of the spin exchange in the two-dimensional Hubbard model with UU equal to the bandwidth. We find that in the pseudogap region, the local bond susceptibility diverges at T=0. This shows the existence of degenerate bond spin excitation and implies quantum criticality and bond order formation when long range correlations are considered. The strong correlation between excitations on parallel neighboring bonds suggests bond singlet dimerization. The suppression of divergence for n<0.78n< \approx 0.78 implies that tor these model parameters this is quantum critical point which separates the unconventional pseudogap region characterized by bond order from a conventional Fermi liquid.Comment: 5 pages, 5 figure

    Effect of long-range hopping on Tc in a two-dimensional Hubbard-Holstein model of the cuprates

    Full text link
    We study the effect of long-range hoppings on Tc for the two-dimensional (2D) Hubbard model with and without Holstein phonons using parameters evaluated from band-structure calculations for cuprates. Employing the dynamical cluster approximation (DCA) with a quantum Monte Carlo (QMC) cluster solver for a 4-site cluster, we observe that without phonons, the long-range hoppings, t' and t'', generally suppress Tc. We argue that this trend remains valid for larger clusters. In the presence of the Holstein phonons, a finite t' enhances Tc in the under-doped region for the hole-doped system, consistent with local-density approximation (LDA) calculations and experiment. This is interpreted through the suppression of antiferromagnetic (AF) correlations and the interplay between polaronic effects and the antiferromagnetism.Comment: 5 pages, 4 figure

    Electron-phonon interaction in correlated electronic systems: polarons and the formation of orbital ordering

    Full text link
    The properties of a dilute electron gas, coupled to the lattice degrees of freedom, are studied and compared with the properties of an electron gas at half-filling, where spinless fermions with two orbitals per lattice site are considered. The simplest model which includes both the local electron-lattice interaction of the Jahn-Teller type and the electronic correlations is the EβE\otimes\beta-Jahn-Teller-Hubbard model. We analyze the formation and stability of Jahn-Teller polarons and bipolarons, respectively. Our approach is based on a hopping expansion in the strong-coupling regime. The results are compared with recently published findings for the Hubbard-Holstein model [1,2]. The special case of the Jahn-Teller-Hubbard model at half-filling is mapped on a spin-1/2 Heisenberg model with phonon-dependent coupling constants. This has been derived within a projection formalism that provides a continued-fraction representation of the Green's function. We study the exact solution for two and three particles and compare it with the effective theory on the infinite lattice with one particle per site.Comment: 4 pages, 0 figures, submitted to Phonons2004, to appear in physica status solid

    The isotope effect in the Hubbard model with local phonons

    Full text link
    The isotope effect (IE) in the two-dimensional Hubbard model with Holstein phonons is studied using the dynamical cluster approximation with quantum Monte Carlo. At small electron-phonon (EP) coupling the IE is negligible. For larger EP coupling there is a large and positive IE on the superconducting temperature that decreases with increasing doping. A significant IE also appears in the low-energy density of states, kinetic energy and charge excitation spectrum. A negligible IE is found in the pseudogap and antiferromagnetic (AF) properties at small doping whereas the AF susceptibility at intermediate doping increases with decreasing phonon frequency ω0\omega_0. This IE stems from increased polaronic effects with decreasing ω0\omega_0. A larger IE at smaller doping occurs due to stronger polaronic effects determined by the interplay of the EP interaction with stronger AF correlations. The IE of the Hubbard-Holstein model exhibits many similarities with the IE measured in cuprate superconductors

    Quantum Criticality and Incipient Phase Separation in the Thermodynamic Properties of the Hubbard Model

    Full text link
    Transport measurements on the cuprates suggest the presence of a quantum critical point hiding underneath the superconducting dome near optimal hole doping. We provide numerical evidence in support of this scenario via a dynamical cluster quantum Monte Carlo study of the extended two-dimensional Hubbard model. Single particle quantities, such as the spectral function, the quasiparticle weight and the entropy, display a crossover between two distinct ground states: a Fermi liquid at low filling and a non-Fermi liquid with a pseudogap at high filling. Both states are found to cross over to a marginal Fermi-liquid state at higher temperatures. For finite next-nearest-neighbor hopping t' we find a classical critical point at temperature T_c. This classical critical point is found to be associated with a phase separation transition between a compressible Mott gas and an incompressible Mott liquid corresponding to the Fermi liquid and the pseudogap state, respectively. Since the critical temperature T_c extrapolates to zero as t' vanishes, we conclude that a quantum critical point connects the Fermi-liquid to the pseudogap region, and that the marginal-Fermi-liquid behavior in its vicinity is the analogous of the supercritical region in the liquid-gas transition.Comment: 18 pages, 9 figure
    corecore