207 research outputs found

    Comparison of marine macrophytes for their contributions to blue carbon sequestration

    Full text link
    Many marine ecosystems have the capacity for long-term storage of organic carbon (C) in what are termed "blue carbon" systems. While blue carbon systems (saltmarsh, mangrove, and seagrass) are efficient at long-term sequestration of organic carbon (C), much of their sequestered C may originate from other (allochthonous) habitats. Macroalgae, due to their high rates of production, fragmentation, and ability to be transported, would also appear to be able to make a significant contribution as C donors to blue C habitats. In order to assess the stability of macroalgal tissues and their likely contribution to long-term pools of C, we applied thermogravimetric analysis (TGA) to 14 taxa of marine macroalgae and coastal vascular plants. We assessed the structural complexity of multiple lineages of plant and tissue types with differing cell wall structures and found that decomposition dynamics varied significantly according to differences in cell wall structure and composition among taxonomic groups and tissue function (photosynthetic vs. attachment). Vascular plant tissues generally exhibited greater stability with a greater proportion of mass loss at temperatures > 300 degrees C (peak mass loss -320 degrees C) than macroalgae (peak mass loss between 175-300 degrees C), consistent with the lignocellulose matrix of vascular plants. Greater variation in thermogravimetric signatures within and among macroalgal taxa, relative to vascular plants, was also consistent with the diversity of cell wall structure and composition among groups. Significant degradation above 600 degrees C for some macroalgae, as well as some belowground seagrass tissues, is likely due to the presence of taxon-specific compounds. The results of this study highlight the importance of the lignocellulose matrix to the stability of vascular plant sources and the potentially significant role of refractory, taxon-specific compounds (carbonates, long-chain lipids, alginates, xylans, and sulfated polysaccharides) from macroalgae and seagrasses for their long-term sedimentary C storage. This study shows that marine macroalgae do contain refractory compounds and thus may be more valuable to long-term carbon sequestration than we previously have considered

    Mangrove and saltmarsh distribution mapping and land cover change assessment for south-eastern Australia from 1991 to 2015

    Get PDF
    Coastal wetland ecosystems, such as saltmarsh and mangroves, provide a wide range of important ecological and socio-economic services. A good understanding of the spatial and temporal distribution of these ecosystems is critical to maximising the benefits from restoration and conservation projects. We mapped mangrove and saltmarsh ecosystem transitions from 1991 to 2015 in south-eastern Australia, using remotely sensed Landsat data and a Random Forest classification. Our classification results were improved by the addition of two physical variables (Shuttle Radar Topographic Mission (SRTM), and Distance to Water). We also provide evidence that the addition of post-classification, spatial and temporal, filters improve overall accuracy of coastal wetlands detection by up to 16%. Mangrove and saltmarsh maps produced in this study had an overall User Accuracy of 0.82–0.95 and 0.81–0.87 and an overall Producer Accuracy of 0.71–0.88 and 0.24–0.87 for mangrove and saltmarsh, respectively. We found that mangrove ecosystems in south-eastern Australia have lost an area of 1148 ha (7.6%), whilst saltmarsh experienced an overall increase in coverage of 4157 ha (20.3%) over this 24-year period. The maps developed in this study allow local managers to quantify persistence, gains, and losses of coastal wetlands in south-eastern Australia

    Oxygen consumption and sulfate reduction in vegetated coastal habitats: Effects of physical disturbance

    Get PDF
    © 2019 Brodersen, Trevathan-Tackett, Nielsen, Connolly, Lovelock, Atwood and Macreadie. Vegetated coastal habitats (VCHs), such as mangrove forests, salt marshes and seagrass meadows, have the ability to capture and store carbon in the sediment for millennia, and thus have high potential for mitigating global carbon emissions. Carbon sequestration and storage is inherently linked to the geochemical conditions created by a variety of microbial metabolisms, where physical disturbance of sediments may expose previously anoxic sediment layers to oxygen (O 2 ), which could turn them into carbon sources instead of carbon sinks. Here, we used O 2 , hydrogen sulfide (H 2 S) and pH microsensors to determine how biogeochemical conditions, and thus aerobic and anaerobic metabolic pathways, vary across mangrove, salt marsh and seagrass sediments (case study from the Sydney area, Australia). We measured the biogeochemical conditions in the top 2.5 cm of surface (0-10 cm depth) and experimentally exposed deep sediments (> 50 cm depth) to simulate undisturbed and physically exposed sediments, respectively, and how these conditions may affect carbon cycling processes. Mangrove surface sediment exhibited the highest rates of O 2 consumption and sulfate (SO 42- ) reduction based on detailed microsensor measurements, with a diffusive O 2 uptake rate of 102 mmol O 2 m -2 d -1 and estimated sulfate reduction rate of 57 mmol S tot2- m -2 d -1 . Surface sediments (0-10 cm) across all the VCHs generally had higher O 2 consumption and estimated sulfate reduction rates than deeper layers (> 50 cm depth). O 2 penetration was < 4 mm for most sediments and only down to 1 mm depth in mangrove surface sediments, which correlated with a significantly higher percent organic carbon content (%C org ) within sediments originating from mangrove forests as compared to those from seagrass and salt marsh ecosystems. Additionally, pH dropped from 8.2 at the sediment/water interface to < 7-7.5 within the first 20 mm of sediment within all ecosystems. Prevailing anoxic conditions, especially in mangrove and seagrass sediments, as well as sediment acidification with depth, likely decreased microbial remineralisation rates of sedimentary carbon. However, physical disturbance of sediments and thereby exposure of deeper sediments to O 2 seemed to stimulate aerobic metabolism in the exposed surface layers, likely reducing carbon stocks in VCHs

    Commentary: Evaluating the role of seagrass in Cenozoic CO2 variations

    Get PDF
    [No abstract available

    Addressing calcium carbonate cycling in blue carbon accounting

    Get PDF
    Scientific Significance Statement There is considerable interest in measuring the capacity of the world\u27s ecosystems to trap and store excess atmospheric carbon dioxide to mitigate human‐induced climate change. Blue carbon describes the carbon storage potential of vegetated coastal ecosystems including tidal marshes, mangroves, and seagrasses. Efforts are now underway to include blue carbon in global carbon offset schemes by managing these ecosystems to enhance carbon sequestration by focusing on their effect on organic carbon processing. However, it is unclear what role inorganic carbon processing in blue carbon ecosystems plays in their overall carbon sequestration. Here, we argue that there are key uncertainties that will need to be addressed before we can account for this important process to more accurately estimate carbon offsets in blue carbon ecosystems

    Holocene record of Tuggerah Lake estuary development on the Australian east coast: sedimentary responses to sea-level fluctuations and climate variability

    Get PDF
    We investigated the Holocene palaeo-environmental record of the Tuggerah Lake barrier estuary on the south-east coast of Australia to determine the influence of local, regional and global environmental changes on estuary development. Using multi-proxy approaches, we identified significant down-core variation in sediment cores relating to sea-level rise and regional climate change. Following erosion of the antecedent land surface during the post-glacial marine transgression, sediment began to accumulate at the more seaward location at ~8500. years before present, some 1500. years prior to barrier emplacement and ~4000. years earlier than at the landward site. The delay in sediment accumulation at the landward site was a consequence of exposure to wave action prior to barrier emplacement, and due to high river flows of the mid-Holocene post-barrier emplacement. As a consequence of the mid-Holocene reduction in river flows, coupled with a moderate decline in sea-level, the lake experienced major changes in conditions at ~4000. years before present. The entrance channel connecting the lake with the ocean became periodically constricted, producing cyclic alternation between intervals of fluvial- and marine-dominated conditions. Overall, this study provides a detailed, multi-proxy investigation of the physical evolution of Tuggerah Lake with causative environmental processes that have influenced development of the estuary

    Do ENSO and coastal development enhance coastal burial of terrestrial carbon?

    Get PDF
    Carbon cycling on the east coast of Australia has the potential to be strongly affected by El Ni&ntilde;o-Southern Oscillation (ENSO) intensification and coastal development (industrialization and urbanization). We performed paleoreconstructions of estuarine sediments from a seagrass-dominated estuary on the east coast of Australia (Tuggerah Lake, New South Wales) to test the hypothesis that millennial-scale ENSO intensification and European settlement in Australia have increased the transfer of organic carbon from land into coastal waters. Our data show that carbon accumulation rates within coastal sediments increased significantly during periods of maximum millennial-scale ENSO intensity (&quot;super-ENSO&quot;) and coastal development. We suggest that ENSO and coastal development destabilize and liberate terrestrial soil carbon, which, during rainfall events (e.g., La Ni&ntilde;a), washes into estuaries and becomes trapped and buried by coastal vegetation (seagrass in this case). Indeed, periods of high carbon burial were generally characterized as having rapid sedimentation rates, higher content of fine-grained sediments, and increased content of wood and charcoal fragments. These results, though preliminary, suggest that coastal development and ENSO intensificationboth of which are predicted to increase over the coming centurycan enhance capture and burial of terrestrial carbon by coastal ecosystems. These findings have important relevance for current efforts to build an understanding of terrestrial- marine carbon connectivity into global carbon budgets

    High variability of Blue Carbon storage in seagrass meadows at the estuary scale

    Get PDF
    Seagrass meadows are considered important natural carbon sinks due to their capacity to store organic carbon (Corg) in sediments. However, the spatial heterogeneity of carbon storage in seagrass sediments needs to be better understood to improve accuracy of blue carbon assessments, particularly when strong gradients are present. We performed an intensive coring study within a sub-tropical estuary to assess the spatial variability in sedimentary Corg associated with seagrasses, and to identify the key factors promoting this variability. We found a strong spatial pattern within the estuary, from 52.16 mg Corg cm-3 in seagrass meadows in the upper parts, declining to 1.06 mg Corg cm-3 in seagrass meadows at the estuary mouth, despite a general gradient of increasing seagrass cover and seagrass habitat extent in the opposite direction. The sedimentary Corg underneath seagrass meadows came principally from allochthonous (non-seagrass) sources (~70-90%), while the contribution of seagrasses was low (~10-30%) throughout the entire estuary. Our results showed that Corg stored in sediments of seagrass meadows can be highly variable within an estuary, attributed largely to accumulation of fine sediments and inputs of allochthonous sources. Local features and the existence of spatial gradients must be considered in blue carbon estimates in coastal ecosystems

    Capitalizing on the global financial interest in blue carbon

    Get PDF
    Natural climate solutions are crucial interventions to help countries and companies achieve their net-zero carbon emissions ambitions. Blue carbon ecosystems such as mangroves, seagrasses, and tidal marshes have attracted particular attention for their ability to sequester and store carbon at densities that can far exceed other ecosystems. The science of blue carbon is now clear, and there is substantial interest from companies and individuals who wish to offset greenhouse gas emissions that they cannot otherwise reduce. We characterise the rapid recent rise in interest in blue carbon ecosystems from the corporate sector and highlight the huge scale of demand (potentially $10 billion or more) from companies and investors. We discuss why, despite this interest and demand, the supply of blue carbon credits remains small. Several market-related challenges currently limit the implementation of blue carbon projects and the sale of resulting credits, including the cost and burden of verification of blue carbon compared to verifying carbon credits in other ecosystems, the general small scale of current blue carbon projects, and double counting of credits between commercial and national institutions. To overcome these challenges, we discuss other supplementary financial instruments beyond carbon credit trading that may also be viable to fund the conservation and restoration of coastal habitats, such as bonds and ecosystem service insurance. Ultimately, a portfolio of financial instruments will be needed in order to generate funding streams that are substantial and reliable enough to realise the potential of blue carbon ecosystems as a natural climate solution

    Estimating the potential blue carbon gains from tidal marsh rehabilitation: A case study from south eastern Australia

    Get PDF
    © Copyright © 2020 Gulliver, Carnell, Trevathan-Tackett, Duarte de Paula Costa, MasquĂ© and Macreadie. Historically, coastal “blue carbon” ecosystems (tidal marshes, mangrove forests, seagrass meadows) have been impacted and degraded by human intervention, mainly in the form of land acquisition. With increasing recognition of the role of blue carbon ecosystems in climate mitigation, protecting and rehabilitating these ecosystems becomes increasingly more important. This study evaluated the potential carbon gains from rehabilitating a degraded coastal tidal marsh site in south-eastern Australia. Tidal exchange at the study site had been restricted by the construction of earthen barriers for the purpose of reclaiming land for commercial salt production. Analysis of sediment cores (elemental carbon and 210Pb dating) revealed that the site had stopped accumulating carbon since it had been converted to salt ponds 65 years earlier. In contrast, nearby recovered (“control”) tidal marsh areas are still accumulating carbon at relatively high rates (0.54 tons C ha–1year–1). Using elevation and sea level rise (SLR) data, we estimated the potential future distribution of tidal marsh vegetation if the earthen barrier were removed and tidal exchange was restored to the degraded site. We estimated that the sediment-based carbon gains over the next 50 years after restoring this small site (360 ha) would be 9,000 tons C, which could offset the annual emissions of ∌7,000 passenger cars at present time (at 4.6 metric tons pa.) or ∌1,400 Australians. Overall, we recommend that this site is a promising prospect for rehabilitation based on the opportunity for blue carbon additionality, and that the business case for rehabilitation could be bolstered through valuation of other co-benefits, such as nitrogen removal, support to fisheries, sediment stabilization, and enhanced biodiversity
    • 

    corecore