1,659 research outputs found

    Utilization of the water soluable fraction of wheat straw as a plant nutrient source

    Get PDF
    Recovery of water soluble, inorganic nutrients from the inedible portion of wheat was found to be an effective means of recycling nutrients within hydroponic systems. Through aqueous extraction (leaching), 60 percent of the total inorganic nutrient weight was removed from wheat straw and roots, although the recovery of individual nutrients varied. Leaching also removed about 20 percent of the total organic carbon from the biomass. In terms of dry weight, the leachate was comprised of approximately 60 percent organic and 40 percent inorganic compounds. Direct use of wheat straw leachate in static hydroponic systems had an inhibitory effect on wheat growth, both in the presence and absence of microorganisms. Biological treatment of leachate either with a mixed microbial community or the oyster mushroom Pleurotus ostreatus L., prior to use in hydroponic solutions, significantly reduced both the organic content and the inhibitory effects of the leachate. The inhibitory effects of unprocessed leachate appear to be a result of rapidly acting phytotoxic compounds that are detoxified by microbial activity. Leaching holds considerable promise as a method for nutrient recycling in a Controlled Ecological Life Support System (CELSS)

    Proximate Composition of Seed and Biomass from Soybean Plants Grown at Different Carbon Dioxide (CO2) Concentrations

    Get PDF
    Soybean plants were grown for 90 days at 500, 1000, 2000, and 5000 ubar (ppm) carbon dioxide (CO2) and compared for proximate nutritional value. For both cultivars (MC and PX), seed protein levels were highest at 1000 (39.3 and 41.9 percent for MC and PX) and lowest at 2000 (34.7 and 38.9 percent for MC and PX). Seed fat (oil) levels were highest at 2000 (21.2 and 20.9 percent for MC and PX) and lowest at 5000 (13.6 and 16.6 percent for MC and PX). Seed carbohydrate levels were highest at 500 (31.5 and 28.4 percent for MC and PX) and lowest at 2000 (20.9 and 20.8 percent for MC and PX). When adjusted for total seed yield per unit growing area, the highest production of protein and carbohydrate occurred with MC at 1000, while equally high amounts of fat were produced with MC at 1000 and 2000. Seed set and pod development at 2000 were delayed in comparison to other CO2 treatments; thus the proportionately high fat and low protein at 2000 may have been a result of the delay in plant maturity rather than CO2 concentration. Stem crude fiber and carbohydrate levels for both cultivars increased with increased CO2. Leaf protein and crude fiber levels also tended to rise with increased CO2 but leaf carbohydrate levels decreased as CO2 was increased. The results suggest that CO2 effects on total seed yield out-weighed any potential advantages to changes in seed composition

    Effects of elevated atmospheric carbon dioxide concentrations on water and acid requirements of soybeans grown in a recirculating hydroponic system

    Get PDF
    Establishing mass budgets of various crop needs, i.e. water and nutrients, in different environments is essential for the Controlled Ecological Life Support System (CELSS). The effects of CO2 (500 and 1000 umol mol (exp -1)) on water and acid use (for pH control) by soybeans in a recirculating hydroponic system were examined. Plants of cvs. McCall and Pixie were grown for 90 days using the nutrient film technique (NFT) and a nitrate based nutrient solution. System acid use for both CO2 levels peaked near 4 weeks during a phase of rapid vegetative growth, but acid use decreased more rapidly under 500 compared to 1000 umol mol (exp GR) CO2. Total system water use by 500 and 1000 umol mol (exp -1) plants was similar, leaving off at 5 weeks and declining as plants senesced (ca. 9 weeks). However, single leaf transpiration rates were consistently lower at 1000 umol mol (exp -1). The data suggest that high CO2 concentrations increase system acid (and nutrient) use because of increased vegetative growth, which in turn negates the benefit of reduced water use (lower transpiration rates) per unit leaf area

    Continuous hydroponic wheat production using a recirculating system

    Get PDF
    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems

    Effects of atmospheric CO2 on photosynthetic characteristics of soybean leaves

    Get PDF
    Soybean (Glycine max. cv. McCall) plants were grown at 500, 1000, and 2000 umol mol (exp -1) CO2 for 35 days with a photosynthetic photon flux of 300 umol m (exp -2) s (-1). Individual leaves were exposed to step changes of photosynthetic photon flux to study CO2 assimilation rates (CAR), i.e., leaf net photosynthesis. In general, CAR increased when CO2 increased from 500 to 1000 umol mol (exp -1), but not from 1000 to 2000 umol mol (exp -1). Regardless of the CO2 level, all leaves showed similar CAR at similar CO2 and PPF. This observation contrasts with reports that plants tend to become 'lazy' at elevated CO2 levels over time. Although leaf stomatal conductance (to water vapor) showed diurnal rhythms entrained to the photoperiod, leaf CAR did not show these rhythms and remained constant across the light period, indicating that stomatal conductance had little effect on CAR. Such measurements suggest that short-term changes in CO2 exchange dynamics for a controlled ecological life support system can be closely predicted for an actively growing soybean crop

    Seasonal Soil CO2 Flux Under Big Sagebrush (Artemisia tridentata Nutt.)

    Get PDF
    Soil respiration is a major contributor to atmospheric CO2, but accurate landscape-scale estimates of soil CO2 flux for many ecosystems including shrublands have yet to be established. We began a project to measure, with high spatial and temporal resolution, soil CO2 flux in a stand (11 x 25 m area) of big sagebrush (Artemisia tridentata Nutt.) at the Logan, Utah, Forestry Sciences Laboratory. Beginning on Nov. 1, 2009, hourly soil CO2 flux measurements were made at a single location in the stand using the Li-Cor LI-8100 soil CO2 flux instrument and 20-cm long-term chamber. Beginning in April, 2010, monthly soil CO2 flux measurements were made on a grid of 11 locations within the stand using the LI- 8100 equipped with the 20-cm survey chamber. Hourly soil temperature (10-cm depth) and volumetric soil water content data were also collected. Soil CO2 flux, temperature, and water content were highly temporally and spatially variable in the sagebrush stand. Mean (std dev) soil CO2 flux, temperature, and water content for the measurement period (November 1, 2009 - October 31, 2010) were 0.96 (0.81) umol m-2 s-1, 10.59 (10.11) deg C, and 0.101 (0.062) m3 m-3, respectively. Calculated annual soil CO2 flux obtained by summing all the hourly measurements was 328 g C m-2 y-1. For semi-arid or arid sites where precipitation is less than evapotranspiration, measured total annual soil CO2 flux will be less than the potential maximum because of dry season suppression of soil respiration when soil water content is very low

    Fat fraction mapping using bSSFP Signal Profile Asymmetries for Robust multi-Compartment Quantification (SPARCQ)

    Get PDF
    Purpose: To develop a novel quantitative method for detection of different tissue compartments based on bSSFP signal profile asymmetries (SPARCQ) and to provide a validation and proof-of-concept for voxel-wise water-fat separation and fat fraction mapping. Methods: The SPARCQ framework uses phase-cycled bSSFP acquisitions to obtain bSSFP signal profiles. For each voxel, the profile is decomposed into a weighted sum of simulated profiles with specific off-resonance and relaxation time ratios. From the obtained set of weights, voxel-wise estimations of the fractions of the different components and their equilibrium magnetization are extracted. For the entire image volume, component-specific quantitative maps as well as banding-artifact-free images are generated. A SPARCQ proof-of-concept was provided for water-fat separation and fat fraction mapping. Noise robustness was assessed using simulations. A dedicated water-fat phantom was used to validate fat fractions estimated with SPARCQ against gold-standard 1H MRS. Quantitative maps were obtained in knees of six healthy volunteers, and SPARCQ repeatability was evaluated in scan rescan experiments. Results: Simulations showed that fat fraction estimations are accurate and robust for signal-to-noise ratios above 20. Phantom experiments showed good agreement between SPARCQ and gold-standard (GS) fat fractions (fF(SPARCQ) = 1.02*fF(GS) + 0.00235). In volunteers, quantitative maps and banding-artifact-free water-fat-separated images obtained with SPARCQ demonstrated the expected contrast between fatty and non-fatty tissues. The coefficient of repeatability of SPARCQ fat fraction was 0.0512. Conclusion: The SPARCQ framework was proposed as a novel quantitative mapping technique for detecting different tissue compartments, and its potential was demonstrated for quantitative water-fat separation.Comment: 20 pages, 7 figures, submitted to Magnetic Resonance in Medicin

    System development and early biological tests in NASA's biomass production chamber

    Get PDF
    The Biomass Production Chamber at Kennedy Space Center was constructed to conduct large scale plant growth studies for NASA's CELSS program. Over the past four years, physical systems and computer control software have been continually upgraded and the degree of atmospheric leakage from the chamber has decreased from about 40 to 5 percent of the total volume per day. Early tests conducted with a limited degree of closure showed that total crop (wheat) growth from the best trays was within 80 percent of reported optimal yields for similar light levels. Yields from subsequent tests under more tightly closed conditions have not been as good--up to only 65 percent of optimal yields. Yields appear to have decreased with increasing closure, yet potential problems exist in cultural techniques and further studies are warranted. With the ability to tightly seal the chamber, quantitative data were gathered on CO2 and water exchange rates. Results showed that stand photosynthesis and transpiration reached a peak near 25 days after planting, soon after full vegetative ground cover was established. In the final phase of testing when atmospheric closure was the highest, ethylene gas levels in the chamber rose from about 10 to nearly 120 ppb. Evidence suggests that the ethylene originated from the wheat plants themselves and may have caused an epinastic rolling of the leaves, but no apparent detrimental effects on whole plant function

    Fat-free noncontrast whole-heart CMR with fast and power-optimized off-resonant water excitation pulses

    Full text link
    Background: Cardiovascular MRI (CMR) faces challenges due to the interference of bright fat signals in visualizing anatomical structures. Effective fat suppression is crucial when using whole-heart CMR. Conventional methods often fall short due to rapid fat signal recovery and water-selective off-resonant pulses come with tradeoffs between scan time and RF energy deposit. A lipid-insensitive binomial off-resonant (LIBOR) RF pulse is introduced, addressing concerns about RF energy and scan time for CMR at 3T. Methods: A short LIBOR pulse was developed and implemented in a free-breathing respiratory self-navigated whole-heart sequence at 3T. A BORR pulse with matched duration, as well as previously used LIBRE pulses, were implemented and optimized for fat suppression in numerical simulations and validated in healthy subjects (n=3). Whole-heart CMR was performed in healthy subjects (n=5) with all four pulses. The SNR of ventricular blood, skeletal muscle, myocardium, and subcutaneous fat, and the coronary vessel sharpness and length were compared. Results: Experiments validated numerical findings and near homogeneous fat suppression was achieved with all pulses. Comparing the short pulses (1ms), LIBOR reduced the RF power two-fold compared with LIBRE, and three-fold compared with BORR, and LIBOR significantly decreased overall fat SNR. The reduction in RF duration shortened the whole-heart acquisition from 8.5min to 7min. No significant differences in coronary arteries detection and sharpness were found when comparing all four pulses. Conclusion: LIBOR enabled whole-heart CMR under 7 minutes at 3T, with large volume fat signal suppression, while reducing RF power compared with LIBRE and BORR. LIBOR is an excellent candidate to address SAR problems encountered in CMR where fat suppression remains challenging and short RF pulses are required.Comment: 25 pages, 7 figures, 2 table

    Le vaccin antiaphteux du type Schmidt- Vallée-Waldmann est un vaccin vivant inactivé

    Get PDF
    Girard H. C., Mackowiak Czesław. Le vaccin antiaphteux du type Shmidt-Vallée-Waldmann est un vaccin vivant inactivé. In: Bulletin de l'Académie Vétérinaire de France tome 102 n°7, 1949. pp. 285-289
    corecore