7 research outputs found

    Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo.

    Get PDF
    Engineering of the Cpf1 crRNA has the potential to enhance its gene editing efficiency and non-viral delivery to cells. Here, we demonstrate that extending the length of its crRNA at the 5 end can enhance the gene editing efficiency of Cpf1 both in cells and in vivo. Extending the 5 end of the crRNA enhances the gene editing efficiency of the Cpf1 RNP to induce non-homologous end-joining and homology-directed repair using electroporation in cells. Additionally, chemical modifications on the extended 5 end of the crRNA result in enhanced serum stability. Also, extending the 5 end of the crRNA by 59 nucleotides increases the delivery efficiency of Cpf1 RNP in cells and in vivo cationic delivery vehicles including polymer nanoparticle. Thus, 5 extension and chemical modification of the Cpf1 crRNA is an effective method for enhancing the gene editing efficiency of Cpf1 and its delivery in vivo

    Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering.

    No full text
    Chemical modification of the gRNA and donor DNA has great potential for improving the gene editing efficiency of Cas9 and Cpf1, but has not been investigated extensively. In this report, we demonstrate that the gRNAs of Cas9 and Cpf1, and donor DNA can be chemically modified at their terminal positions without losing activity. Moreover, we show that 5' fluorescently labeled donor DNA can be used as a marker to enrich HDR edited cells by a factor of two through cell sorting. In addition, we demonstrate that the gRNA and donor DNA can be directly conjugated together into one molecule, and show that this gRNA-donor DNA conjugate is three times better at transfecting cells and inducing HDR, with cationic polymers, than unconjugated gRNA and donor DNA. The tolerance of the gRNA and donor DNA to chemical modifications has the potential to enable new strategies for genome engineering

    Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair.

    No full text
    CRISPR/Cas9-based therapeutics, especially those that can correct gene mutations via homology directed repair (HDR), have the potential to revolutionize the treatment of genetic diseases. However, HDR-based therapeutics are challenging to develop because they require simultaneous in vivo delivery of Cas9 protein, guide RNA and donor DNA. Here, we demonstrate that a delivery vehicle composed of gold nanoparticles conjugated to DNA and complexed with cationic endosomal disruptive polymers can deliver Cas9 ribonucleoprotein and donor DNA into a wide variety of cell types, and efficiently correct the DNA mutation that causes Duchenne muscular dystrophy in mice via local injection, with minimal off-target DNA damage
    corecore