4,698 research outputs found

    A double main sequence turn-off in the rich star cluster NGC 1846 in the Large Magellanic Cloud

    Full text link
    We report on HST/ACS photometry of the rich intermediate-age star cluster NGC 1846 in the Large Magellanic Cloud, which clearly reveals the presence of a double main sequence turn-off in this object. Despite this, the main sequence, sub-giant branch, and red giant branch are all narrow and well-defined, and the red clump is compact. We examine the spatial distribution of turn-off stars and demonstrate that all belong to NGC 1846 rather than to any field star population. In addition, the spatial distributions of the two sets of turn-off stars may exhibit different central concentrations and some asymmetries. By fitting isochrones, we show that the properties of the colour-magnitude diagram can be explained if there are two stellar populations of equivalent metal abundance in NGC 1846, differing in age by approximately 300 Myr. The absolute ages of the two populations are ~1.9 and ~2.2 Gyr, although there may be a systematic error of up to +/-0.4 Gyr in these values. The metal abundance inferred from isochrone fitting is [M/H] ~ -0.40, consistent with spectroscopic measurements of [Fe/H]. We propose that the observed properties of NGC 1846 can be explained if this object originated via the tidal capture of two star clusters formed separately in a star cluster group in a single giant molecular cloud. This scenario accounts naturally for the age difference and uniform metallicity of the two member populations, as well as the differences in their spatial distributions.Comment: 9 pages, 8 figures, accepted for publication in MNRAS. A version with full resolution figures may be obtained at http://www.roe.ac.uk/~dmy/papers/MN-07-0441-MJ_rv.ps.gz (postscript) or at http://www.roe.ac.uk/~dmy/papers/MN-07-0441-MJ_rv.pdf (PDF

    Oscillations in a maturation model of blood cell production.

    Get PDF
    We present a mathematical model of blood cell production which describes both the development of cells through the cell cycle, and the maturation of these cells as they differentiate to form the various mature blood cell types. The model differs from earlier similar ones by considering primitive stem cells as a separate population from the differentiating cells, and this formulation removes an apparent inconsistency in these earlier models. Three different controls are included in the model: proliferative control of stem cells, proliferative control of differentiating cells, and peripheral control of stem cell committal rate. It is shown that an increase in sensitivity of these controls can cause oscillations to occur through their interaction with time delays associated with proliferation and differentiation, respectively. We show that the characters of these oscillations are quite distinct and suggest that the model may explain an apparent superposition of fast and slow oscillations which can occur in cyclical neutropenia. © 2006 Society for Industrial and Applied Mathematics

    On the Exponentials of Some Structured Matrices

    Full text link
    In this note explicit algorithms for calculating the exponentials of important structured 4 x 4 matrices are provided. These lead to closed form formulae for these exponentials. The techniques rely on one particular Clifford Algebra isomorphism and basic Lie theory. When used in conjunction with structure preserving similarities, such as Givens rotations, these techniques extend to dimensions bigger than four.Comment: 19 page

    Asymmetric supernova remnants generated by Galactic, massive runaway stars

    Full text link
    After the death of a runaway massive star, its supernova shock wave interacts with the bow shocks produced by its defunct progenitor, and may lose energy, momentum, and its spherical symmetry before expanding into the local interstellar medium (ISM). We investigate whether the initial mass and space velocity of these progenitors can be associated with asymmetric supernova remnants. We run hydrodynamical models of supernovae exploding in the pre-shaped medium of moving Galactic core-collapse progenitors. We find that bow shocks that accumulate more than about 1.5 Mo generate asymmetric remnants. The shock wave first collides with these bow shocks 160-750 yr after the supernova, and the collision lasts until 830-4900 yr. The shock wave is then located 1.35-5 pc from the center of the explosion, and it expands freely into the ISM, whereas in the opposite direction it is channelled into the region of undisturbed wind material. This applies to an initially 20 Mo progenitor moving with velocity 20 km/s and to our initially 40 Mo progenitor. These remnants generate mixing of ISM gas, stellar wind and supernova ejecta that is particularly important upstream from the center of the explosion. Their lightcurves are dominated by emission from optically-thin cooling and by X-ray emission of the shocked ISM gas. We find that these remnants are likely to be observed in the [OIII] lambda 5007 spectral line emission or in the soft energy-band of X-rays. Finally, we discuss our results in the context of observed Galactic supernova remnants such as 3C391 and the Cygnus Loop.Comment: 21 pages, 16 figure
    corecore