59 research outputs found

    Technologies for Delivery of Proton and Ion Beams for Radiotherapy

    Full text link
    Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.Comment: 53 pages, 13 figures. Submitted to International Journal of Modern Physics

    An automated workflow for patient-specific quality control of contour propagation

    Get PDF
    Contour propagation is an essential component of adaptive radiotherapy, but current contour propagation algorithms are not yet sufficiently accurate to be used without manual supervision. Manual review of propagated contours is time-consuming, making routine implementation of real-time adaptive radiotherapy unrealistic. Automated methods of monitoring the performance of contour propagation algorithms are therefore required. We have developed an automated workflow for patient-specific quality control of contour propagation and validated it on a cohort of head and neck patients, on which parotids were outlined by two observers. Two types of error were simulated-mislabelling of contours and introducing noise in the scans before propagation. The ability of the workflow to correctly predict the occurrence of errors was tested, taking both sets of observer contours as ground truth, using receiver operator characteristic analysis. The area under the curve was 0.90 and 0.85 for the observers, indicating good ability to predict the occurrence of errors. This tool could potentially be used to identify propagated contours that are likely to be incorrect, acting as a flag for manual review of these contours. This would make contour propagation more efficient, facilitating the routine implementation of adaptive radiotherap

    Oxygen Depletion in Proton Spot Scanning: A Tool for Exploring the Conditions Needed for FLASH

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-11-17, pub-electronic 2021-11-22Publication status: PublishedFunder: Cancer Research UK Manchester Institute; Grant(s): S_3795, C1994/A28701, 730983Funder: NIHR Manchester Biomedical Research Centre; Grant(s): BRC-1215-20007FLASH radiotherapy is a rapidly developing field which promises improved normal tissue protection compared to conventional irradiation and no compromise on tumour control. The transient hypoxic state induced by the depletion of oxygen at high dose rates provides one possible explanation. However, studies have mostly focused on uniform fields of dose and there is a lack of investigation into the spatial and temporal variation of dose from proton pencil-beam scanning (PBS). A model of oxygen reaction and diffusion in tissue has been extended to simulate proton PBS delivery and its impact on oxygen levels. This provides a tool to predict oxygen effects from various PBS treatments, and explore potential delivery strategies. Here we present a number of case applications to demonstrate the use of this tool for FLASH-related investigations. We show that levels of oxygen depletion could vary significantly across a large parameter space for PBS treatments, and highlight the need for in silico models such as this to aid in the development and optimisation of FLASH radiotherapy

    Experimental assessment of inter-centre variation in stopping-power and range prediction in particle therapy

    Get PDF
    Purpose: Experimental assessment of inter-centre variation and absolute accuracy of stopping-power ratio (SPR) prediction within 17 particle therapy centres of the European Particle Therapy Network. Material and methods: A head and body phantom with seventeen tissue-equivalent materials were scanned consecutively at the participating centres using their individual clinical CT scan protocol and translated into SPR with their in-house CT-number-to-SPR conversion. Inter-centre variation and absolute accuracy in SPR prediction were quantified for three tissue groups: lung, soft tissues and bones. The integral effect on range prediction for typical clinical beams traversing different tissues was determined for representative beam paths for the treatment of primary brain tumours as well as lung and prostate cancer. Results: An inter-centre variation in SPR prediction (2 sigma) of 8.7%, 6.3% and 1.5% relative to water was determined for bone, lung and soft-tissue surrogates in the head setup, respectively. Slightly smaller variations were observed in the body phantom (6.2%, 3.1%, 1.3%). This translated into inter-centre variation of integral range prediction (2 sigma) of 2.9%, 2.6% and 1.3% for typical beam paths of prostate-, lung-and primary brain-tumour treatments, respectively. The absolute error in range exceeded 2% in every fourth participating centre. The consideration of beam hardening and the execution of an independent HLUT validation had a positive effect, on average. Conclusion: The large inter-centre variations in SPR and range prediction justify the currently clinically used margins accounting for range uncertainty, which are of the same magnitude as the inter-centre variation. This study underlines the necessity of higher standardisation in CT-number-to-SPR conversion. (C) 2021 The Authors. Published by Elsevier B.V
    corecore