6 research outputs found

    Analysis of photothermal release of Oligonucleotides from hollow Gold nanospheres by surface enhanced raman scattering (SERS)

    Get PDF
    The photothermal release of single stranded DNA (ssDNA) from the surface of gold nanoparticles of different shapes and sizes is a promising mode of delivering DNA for gene-therapy applications. Here, we demonstrate the first targeted photothermal release of ssDNA from hollow gold nanospheres (HGNs) and analyse the release of the ssDNA using quantitative surface enhanced Raman scattering (SERS). The HGNs used demonstrate a tunable localized surface plasmon resonance (LSPR) frequency while maintaining size consistency, allowing for selective ssDNA release based on matching the excitation frequency to the plasmon resonance. It is shown that HGNs with resonances at 760 and HGN 670 nm release significant amounts of ssDNA when excited via 785 nm and 640 nm lasers respectively. When excited with a wavelength far from the LSPR of the particles, the ssDNA release is negligible. This is the first demonstration of SERS to analyze the amount of ssDNA photothermally released from the surface of HGNs. In contrast to traditional fluorescence measurements, this SERS based approach provides quantitatively robust data for analysis of ssDNA release and lays a strong foundation for future studies exploiting plasmonically induced ssDNA release

    Artificial multimodal receptors based on ion relaxation dynamics

    No full text
    Human skin has different types of tactile receptors that can distinguish various mechanical stimuli from temperature. We present a deformable artificial multimodal ionic receptor that can differentiate thermal and mechanical information without signal interference. Two variables are derived from the analysis of the ion relaxation dynamics: the charge relaxation time as a strain-insensitive intrinsic variable to measure absolute temperature and the normalized capacitance as a temperature-insensitive extrinsic variable to measure strain. The artificial receptor with a simple electrode-electrolyte-electrode structure simultaneously detects temperature and strain by measuring the variables at only two measurement frequencies. The human skin-like multimodal receptor array, called multimodal ionelectronic skin (IEM-skin), provides real-time force directions and strain profiles in various tactile motions (shear, pinch, spread, torsion, and so on)

    Interfacial Speciation Determines Interfacial Chemistry: X‐ray‐Induced Lithium Fluoride Formation from Water‐in‐salt Electrolytes on Solid Surfaces

    No full text
    Super-concentrated "water-in-salt" electrolytes recently spurred resurgent interest for high energy density aqueous lithium-ion batteries. Thermodynamic stabilization at high concentrations and kinetic barriers towards interfacial water electrolysis significantly expand the electrochemical stability window, facilitating high voltage aqueous cells. Herein we investigated LiTFSI/H2O electrolyte interfacial decomposition pathways in the "water-in-salt" and "salt-in-water" regimes using synchrotron X-rays, which produce electrons at the solid/electrolyte interface to mimic reductive environments, and simultaneously probe the structure of surface films using X-ray diffraction. We observed the surface-reduction of TFSI(-)at super-concentration, leading to lithium fluoride interphase formation, while precipitation of the lithium hydroxide was not observed. The mechanism behind this photoelectron-induced reduction was revealed to be concentration-dependent interfacial chemistry that only occurs among closely contact ion-pairs, which constitutes the rationale behind the "water-in-salt" concept.ISSN:1433-7851ISSN:1521-3773ISSN:0570-083

    Interfacial Speciation Determines Interfacial Chemistry: X‐ray‐Induced Lithium Fluoride Formation from Water‐in‐salt Electrolytes on Solid Surfaces

    No full text
    Super-concentrated "water-in-salt" electrolytes recently spurred resurgent interest for high energy density aqueous lithium-ion batteries. Thermodynamic stabilization at high concentrations and kinetic barriers towards interfacial water electrolysis significantly expand the electrochemical stability window, facilitating high voltage aqueous cells. Herein we investigated LiTFSI/H2O electrolyte interfacial decomposition pathways in the "water-in-salt" and "salt-in-water" regimes using synchrotron X-rays, which produce electrons at the solid/electrolyte interface to mimic reductive environments, and simultaneously probe the structure of surface films using X-ray diffraction. We observed the surface-reduction of TFSI(-)at super-concentration, leading to lithium fluoride interphase formation, while precipitation of the lithium hydroxide was not observed. The mechanism behind this photoelectron-induced reduction was revealed to be concentration-dependent interfacial chemistry that only occurs among closely contact ion-pairs, which constitutes the rationale behind the "water-in-salt" concept.ISSN:1433-7851ISSN:1521-3773ISSN:0570-083
    corecore