7,197 research outputs found

    Numerical Investigation of Second Mode Attenuation over Carbon/Carbon Surfaces on a Sharp Slender Cone

    Full text link
    We have carried out axisymmetric numerical simulations of a spatially developing hypersonic boundary layer over a sharp 7^{\circ{}}-half-angle cone at M=7.5M_\infty=7.5 inspired by the experimental investigations by Wagner (2015). Simulations are first performed with impermeable (or solid) walls with a one-time broadband pulse excitation applied upstream to determine the most convectively-amplified frequencies resulting in the range 260kHz -- 400kHz, consistent with experimental observations of second-mode instability waves. Subsequently, we introduce harmonic disturbances via continuous periodic suction and blowing at 270kHz and 350kHz. For each of these forcing frequencies complex impedance boundary conditions (IBC), modeling the acoustic response of two different carbon/carbon (C/C) ultrasonically absorptive porous surfaces, are applied at the wall. The IBCs are derived as an output of a pore-scale aeroacoustic analysis -- the inverse Helmholtz Solver (iHS) -- which is able to return the broadband real and imaginary components of the surface-averaged impedance. The introduction of the IBCs in all cases leads to a significant attenuation of the harmonically-forced second-mode wave. In particular, we observe a higher attenuation rate of the introduced waves with frequency of 350kHz in comparison with 270kHz, and, along with the iHS impedance results, we establish that the C/C surfaces absorb acoustic energy more effectively at higher frequencies.Comment: AIAA-SciTech 201

    Drift and Diffusion of Spins Generated by the Spin Hall Effect

    Full text link
    Electrically generated spin accumulation due to the spin Hall effect is imaged in n-GaAs channels using Kerr rotation microscopy, focusing on its spatial distribution and time-averaged behavior in a magnetic field. Spatially-resolved imaging reveals that spin accumulation observed in transverse arms develops due to longitudinal drift of spin polarization produced at the sample boundaries. One- and two-dimensional drift-diffusion modeling is used to explain these features, providing a more complete understanding of observations of spin accumulation and the spin Hall effect.Comment: 9 pages, 3 figure

    Quality assurance in stereotactic radiosurgery/radiotherapy according to DIN 6875-1

    Get PDF
    The new DIN (' Deutsche Industrie- Norm') 6875- 1, which is currently being finalised, deals with quality assurance ( QA) criteria and tests methods for linear accelerator and Gamma Knife stereotactic radiosurgery/ radiotherapy including treatment planning, stereotactic frame and stereotactic imaging and a system test to check the whole chain of uncertainties. Our existing QA program, based on dedicated phantoms and test procedures, has been refined to fulfill the demands of this new DIN. The radiological and mechanical isocentre corresponded within 0.2 mm and the measured 50% isodose lines were in agreement with the calculated ones within less than 0.5 mm. The measured absorbed dose was within 3%. The resultant output factors measured for the 14-, 8- and 4- mm collimator helmet were 0.9870 +/- 0.0086, 0.9578 +/- 0.0057 and 0.8741 +/- 0.0202, respectively. For 170 consecutive tests, the mean geometrical accuracy was 0.48 +/- 0.23 mm. Besides QA phantoms and analysis software developed in- house, the use of commercially available tools facilitated the QA according to the DIN 6875- 1 with which our results complied. Copyright (C) 2004 S. Karger AG, Basel

    Spin Control of Drifting Electrons using Local Nuclear Polarization in Ferromagnet/Semiconductor Heterostructures

    Full text link
    We demonstrate methods to locally control the spin rotation of moving electrons in a GaAs channel. The Larmor frequency of optically-injected spins is modulated when the spins are dragged through a region of spin-polarized nuclei created at a MnAs/GaAs interface. The effective field created by the nuclei is controlled either optically or electrically using the ferromagnetic proximity polarization effect. Spin rotation is also tuned by controlling the carrier traverse time through the polarized region. We demonstrate coherent spin rotations exceeding 4 pi radians during transport.Comment: 15 pages, 4 figure

    SDSSJ143244.91+301435.3 at VLBI: a compact radio galaxy in a narrow-line Seyfert 1

    Get PDF
    We present VLBI observations, carried out with the European Very Long Baseline Interferometry Network (EVN), of SDSSJ143244.91+301435.3, a radio-loud narrow-line Seyfert 1 (RLNLS1) characterized by a steep radio spectrum. The source, compact at Very Large Array (VLA) resolution, is resolved on the milliarcsec scale, showing a central region plus two extended structures. The relatively high brightness temperature of all components (5x10^6-1.3x10^8 K) supports the hypothesis that the radio emission is non-thermal and likely produced by a relativistic jet and/or small radio lobes. The observed radio morphology, the lack of a significant core and the presence of a low frequency (230 MHz) spectral turnover are reminiscent of the Compact Steep Spectrum sources (CSS). However, the linear size of the source (~0.5kpc) measured from the EVN map is lower than the value predicted using the turnover/size relation valid for CSS sources (~6kpc). This discrepancy can be explained by an additional component not detected in our observations, accounting for about a quarter of the total source flux density, combined to projection effects. The low core-dominance of the source (CD<0.29) confirms that SDSSJ143244.91+301435.3 is not a blazar, i.e. the relativistic jet is not pointing towards the observer. This supports the idea that SDSSJ143244.91+301435.3 may belong to the "parent population" of flat-spectrum RLNLS1 and favours the hypothesis of a direct link between RLNLS1 and compact, possibly young, radio galaxies.Comment: 8 pages, 3 figures, accepted for publication in MNRA

    Signatures in a Giant Radio Galaxy of a Cosmological Shock Wave at Intersecting Filaments of Galaxies

    Get PDF
    Sensitive images of low-level, Mpc-sized radio cocoons offer new opportunities to probe large scale intergalactic gas flows outside clusters of galaxies. New radio images of high surface brightness sensitivity at strategically chosen wavelengths of the giant radio galaxy NGC 315 (Mack et al. 1997,1998) reveal significant asymmetries and particularities in the morphology, radio spectrum and polarization of the ejected radio plasma. We argue that the combination of these signatures provides a sensitive probe of an environmental shock wave. Analysis of optical redshifts in NGC 315 vicinity confirms its location to be near, or at a site of large-scale flow collisions in the 100 Mpc sized Pisces-Perseus Supercluster region. NGC 315 resides at the intersection of several galaxy filaments, and its radio plasma serves there as a `weather station' (Burns 1998) probing the flow of the elusive and previously invisible IGM gas. If our interpretation is correct, this is the first indication for a shock wave in flows caused by the cosmological large scale structure formation, which is located in a filament of galaxies. The possibility that the putative shock wave is a source of gamma-rays and ultra high energy cosmic rays is briefly discussed.Comment: accepted by Astrophysical Journal Letters, 4 pages, 3 figures (incl. 2 color), uses emulateapj5.sty (included), aastex.sty (included) and psfig.st

    Oscillatory Spin Polarization and Magneto-Optic Kerr Effect in Fe3O4 Thin Films on GaAs(001)

    Full text link
    The spin dependent properties of epitaxial Fe3O4 thin films on GaAs(001) are studied by the ferromagnetic proximity polarization (FPP) effect and magneto-optic Kerr effect (MOKE). Both FPP and MOKE show oscillations with respect to Fe3O4 film thickness, and the oscillations are large enough to induce repeated sign reversals. We attribute the oscillatory behavior to spin-polarized quantum well states forming in the Fe3O4 film. Quantum confinement of the t2g states near the Fermi level provides an explanation for the similar thickness dependences of the FPP and MOKE oscillations.Comment: to appear in Phys. Rev. Let
    corecore