535 research outputs found

    Use of Research Evidence: Social Services Portfolio

    Get PDF
    The William T. Grant Foundation intends that the emerging research evidence from its Use of Research Evidence (URE) portfolio be useful to those engaged in these (and other) diverse efforts. But broad and meaningful use of research evidence will require conversations that extend beyond researchers and expert forums. Indeed, URE findings suggest that policymakers and practitioners should not be viewed simply as "end users" of research evidence. To provide insight into how URE studies and the resulting evidence could be most relevant and useful to them, policymakers and practitioners at all levels in the social services system must have a voice in these conversations. This paper is intended to foster and inform dialogue among researchers, policymakers, and practitioners by reflecting on the Foundation's social services URE portfolio from the perspective of policy and practice and by identifying potential opportunities for the next generation of studies and considerations for those undertaking that work

    Collective behavior of colloids due to critical Casimir interactions

    Full text link
    If colloidal solute particles are suspended in a solvent close to its critical point, they act as cavities in a fluctuating medium and thereby restrict and modify the fluctuation spectrum in a way which depends on their relative configuration. As a result effective, so-called critical Casimir forces (CCFs) emerge between the colloids. The range and the amplitude of CCFs depend sensitively on the temperature and the composition of the solvent as well as on the boundary conditions of the order parameter of the solvent at the particle surfaces. These remarkable, moreover universal features of the CCFs provide the possibility for an active control over the assembly of colloids. This has triggered a recent surge of experimental and theoretical interest in these phenomena. We present an overview of current research activities in this area. Various experiments demonstrate the occurrence of thermally reversible self-assembly or aggregation or even equilibrium phase transitions of colloids in the mixed phase below the lower consolute points of binary solvents. We discuss the status of the theoretical description of these phenomena, in particular the validity of a description in terms of effective, one-component colloidal systems and the necessity of a full treatment of a ternary solvent-colloid mixture. We suggest perspectives on the directions towards which future research in this field might develop.Comment: review, 88 pages, 19 figure

    Phase separation around heated colloid in bulk and under confinement

    Full text link
    We study the non-equilibrium coarsening dynamics of a binary liquid solvent around a colloidal particle in a presence of a time-dependent temperature gradient that emerges after temperature quench of a suitably coated colloid surface. The solvent is maintained at its critical concentration and the colloid is fixed in space. The coarsening patterns near the surface are shown to be strongly dependent on the colloid surface adsorption properties and on the temperature evolution. The temperature gradient alters the morphology of a binary solvent near the surface of a colloid as compared to the coarsening proceeding at constant temperature everywhere. We also present results for the evolution of coarsening in thin films with confining surfaces preferring one species of the binary liquid mixture over the other. Confinement leads to a faster phase segregation process and formation of a bridge connecting the colloid and both the confining walls.Comment: 9 pages, 12 figure

    Effect of ions on confined near-critical binary aqueous mixture

    Full text link
    Near-critical binary mixtures containing ions and confined between two charged and selective surfaces are studied within a Landau-Ginzburg theory extended to include electrostatic interactions. Charge density profiles and the effective interactions between the confining surfaces are calculated in the case of chemical preference of ions for one of the solvent components. Close to the consolute point of the binary solvent, the preferential solubility of ions leads to the modification of the charge density profiles in respect to the ones obtained from the Debye-H\"uckel theory. As a result, the electrostatic contribution to the effective potential between the charged surface can exhibit an attractive well. Our calculations are based on the approximation scheme valid if the bulk correlation length of a solvent is much larger than the Debye screening length; in this critical regime the effect of charge on the concentration profiles of the solvent is subdominant. Such conditions are met in the recent measurements of the effective forces acting between a substrate and a spherical colloidal particle immersed in the near-critical water-lutidine mixture [Nature V. 451, 172 (2008)]. Our analytical results are in a quantitative agreement with the experimental ones.Comment: 37 pages, 8 figure

    Solvent coarsening around colloids driven by temperature gradients

    Full text link
    Using mesoscopic numerical simulations and analytical theory we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, as function of time the phase being next to its surface alternates. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature TcT_c of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.Comment: 8 pages, 4 figure

    Phase diagram of a model for 3He-4He mixtures in three dimensions

    Full text link
    A lattice model of 3He - 4He mixtures which takes into account the continuous rotational symmetry O(2) of the superfluid degrees of freedom of 4He is studied in the molecular-field approximation and by Monte Carlo simulations in three dimensions. In contrast to its two-dimensional version, for reasonable values of the interaction parameters the resulting phase diagram resembles that observed experimentally for 3He - 4He mixtures, for which phase separation occurs as a consequence of the superfluid transition. The corresponding continuum Ginzburg-Landau model with two order parameters describing 3He- 4He mixtures near tricriticality is derived from the considered lattice model. All coupling constants appearing in the continuum model are explicitly expressed in terms of the mean concentration of 4He, the temperature, and the microscopic interaction parameters characterizing the lattice system.Comment: 32 pages, 12 figures, submitted to the Phys. Rev.

    Two-temperature Langevin dynamics in a parabolic potential

    Full text link
    We study a planar two-temperature diffusion of a Brownian particle in a parabolic potential. The diffusion process is defined in terms of two Langevin equations with two different effective temperatures in the X and the Y directions. In the stationary regime the system is described by a non-trivial particle position distribution P(x,y), which we determine explicitly. We show that this distribution corresponds to a non-equilibrium stationary state, characterised by the presence of space-dependent particle currents which exhibit a non-zero rotor. Theoretical results are confirmed by the numerical simulations.Comment: 9 pages, 2 figure

    Effects of Confinement on Critical Adsorption: Absence of Critical Depletion for Fluids in Slit Pores

    Full text link
    The adsorption of a near-critical fluid confined in a slit pore is investigated by means of density functional theory and by Monte Carlo simulation for a Lennard-Jones fluid. Our work was stimulated by recent experiments for SF_6 adsorbed in a mesoporous glass which showed the striking phenomenon of critical depletion, i.e. the adsorption excess "Gamma" first increases but then decreases very rapidly to negative values as the bulk critical temperature T_c is approached from above along near-critical isochores. By contrast, our density functional and simulation results, for a range of strongly attractive wall-fluid potentials, show Gamma monotonically increasing and eventually saturating as the temperature is lowered towards T_c along both the critical (rho=rho_c) and sub-critical isochores (rho<\rho_c). Such behaviour results from the increasingly slow decay of the density profile away from the walls, into the middle of the slit, as T->T_c. For rho < rho_c we find that in the fluid the effective bulk field, which is negative and which favours desorption, is insufficient to dominate the effects of the surface fields which favour adsorption. We compare this situation with earlier results for the lattice gas model with a constant (negative) bulk field where critical depletion was found. Qualitatively different behaviour of the density profiles and adsorption is found in simulations for intermediate and weakly attractive wall-fluid potentials but in no case do we observe the critical depletion found in experiments. We conclude that the latter cannot be accounted for by a single pore model.Comment: 21 pages Revtex. Submitted to Phys. Rev.
    • …
    corecore