89 research outputs found

    Leptospirosis in American Samoa – Estimating and Mapping Risk Using Environmental Data

    Get PDF
    Leptospirosis is the most common bacterial infection transmitted from animals to humans. Infected animals excrete the bacteria in their urine, and humans can become infected through contact with animals or a contaminated environment such as water and soil. Environmental factors are important in determining the risk of human infection, and differ between ecological settings. The wide range of risk factors include high rainfall and flooding; poor sanitation and hygiene; urbanisation and overcrowding; contact with animals (including rodents, livestock, pets, and wildlife); outdoor recreation and ecotourism; and environmental degradation. Predictive risk maps have been produced for many infectious diseases to identify high-risk areas for transmission and guide allocation of public health resources. Maps are particularly useful where disease surveillance and epidemiological data are poor. The objectives of this study were to estimate leptospirosis seroprevalence at geographic locations based on environmental factors, produce a predictive disease risk map for American Samoa, and assess the accuracy of the maps in predicting infection risk. This study demonstrated the value of geographic information systems and disease mapping for identifying environmental risk factors for leptospirosis, and enhancing our understanding of disease transmission. Similar principles could be used to investigate the epidemiology of leptospirosis in other areas

    Differential Cytokine Gene Expression According to Outcome in a Hamster Model of Leptospirosis

    Get PDF
    Leptospirosis is a widespread bacterial infection that is transmitted by soil or water contaminated by the urine of infected animals, or directly from these animals. It has highly diverse clinical presentations, making its differential diagnosis difficult. Though most cases are minor and self-resolving, there are also severe forms that include a sepsis pattern and multiple organ failure, and have possible fatal outcomes. Predictors of disease evolution and outcome are scarce, yet they would be very valuable to clinicians as well as to better decipher disease pathogenesis. In this study, we used a hamster model of leptospirosis to evaluate if immune genes were differentially expressed between individuals and if their expression levels could help forecast the outcome of the disease. We found that hamsters that later died from leptospirosis had significantly higher expression levels of both pro- and anti-inflammatory mediators compared to survivors. These results suggest that expression levels of these immune effectors might be helpful predictors of outcome in leptospirosis and that septic shock contributes to fatal leptospirosis

    Developmental disturbances associated with agenesis of the permanent maxillary lateral incisor

    Get PDF
    The aim of this study was to characterise the intra and extra-oral phenotype associated with agenesis of the permanent maxillary lateral incisor. We compared three groups: (1) subjects with agenesis of one or both permanent maxillary lateral incisors (n=80); (2) first and second degree relatives of group 1 with no agenesis of the permanent maxillary lateral incisor and (3) subjects with no agenesis of the maxillary lateral incisor or family history of it (n=49). For each of the 201 subjects detailed clinical information was reviewed and panoramic radiographs were analysed. Considering only the sample with unilateral agenesis, microdontia of the contralateral permanent maxillary lateral incisor was significantly more frequent in group 1 (82.4%) than in group 2 (25%) and the control group (2%). This supports the theory that microdontia is a variable expression of the same developmental disturbance that causes tooth agenesis. The absence of third molars occurred more often in group 1 (36.2%) than in groups 2 and 3 (18.6% and 18.9% respectively), confirming that agenesis of third molars was markedly associated with the agenesis of the permanent maxillary lateral incisor. Agenesis of teeth other than third molars was not significantly different among subjects with agenesis of the permanent maxillary lateral incisor and their relatives. The frequencies of supernumerary teeth, permanent maxillary canine impaction, general health condition and minor anomalies were not significantly different between the three groups

    Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3.

    Get PDF
    Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-d pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.This study was funded by NIH grant NS073976 to TKH and a John Sealy Grant to PSS
    corecore