23 research outputs found

    The Influence of the Differentiation of Genes Encoding Peroxisome Proliferator-Activated Receptors and Their Coactivators on Nutrient and Energy Metabolism

    Get PDF
    Genetic components may play an important role in the regulation of nutrient and energy metabolism. In the presence of specific genetic variants, metabolic dysregulation may occur, especially in relation to the processes of digestion, assimilation, and the physiological utilization of nutrients supplied to the body, as well as the regulation of various metabolic pathways and the balance of metabolic changes, which may consequently affect the effectiveness of applied reduction diets and weight loss after training. There are many well-documented studies showing that the presence of certain polymorphic variants in some genes can be associated with specific changes in nutrient and energy metabolism, and consequently, with more or less desirable effects of applied caloric reduction and/or exercise intervention. This systematic review focused on the role of genes encoding peroxisome proliferator-activated receptors (PPARs) and their coactivators in nutrient and energy metabolism. The literature review prepared showed that there is a link between the presence of specific alleles described at different polymorphic points in PPAR genes and various human body characteristics that are crucial for the efficacy of nutritional and/or exercise interventions. Genetic analysis can be a valuable element that complements the work of a dietitian or trainer, allowing for the planning of a personalized diet or training that makes the best use of the innate metabolic characteristics of the person who is the subject of their interventions

    Association of Elite Sports Status with Gene Variants of Peroxisome Proliferator Activated Receptors and Their Transcriptional Coactivator

    No full text
    Background: Although the scientific literature regarding sports genomics has grown during the last decade, some genes, such as peroxisome proliferator activated receptors (PPARs), have not been fully described in terms of their role in achieving extraordinary sports performance. Therefore, the purpose of this systematic review was to determine which elite sports performance constraints are positively influenced by PPARs and their coactivators. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were used, with a combination of PPAR and sports keywords. Results: In total, 27 studies that referred to PPARs in elite athletes were included, where the Ala allele in PPARG rs1801282 was associated with strength and power elite athlete status in comparison to subelite athlete status. The C allele in PPARA rs4253778 was associated with soccer, and the G allele PPARA rs4253778 was associated with endurance elite athlete status. Other elite status endurance alleles were the Gly allele in PPARGC1A rs8192678 and the C allele PPARD rs2016520. Conclusions: PPARs can be used for estimating the potential to achieve elite status in human physical performance in strength and power, team, and aerobic sports disciplines. Carrying specific PPAR alleles can provide a partial benefit to achieving elite sports status, but does not preclude achieving elite status if they are absent

    CCL2 Gene Expression and Protein Level Changes Observed in Response to Wingate Anaerobic Test in High-Trained Athletes and Non-Trained Controls

    No full text
    Intensive, acute exercise may bring a large systemic inflammatory response marked by substantial increases in inflammatory cytokines and chemokines. One such chemokines–CCL2–is a key factor involved in inflammatory reaction to exercise. The direct aim of the study was to describe the changes in the CCL2 expression levels after anaerobic exercise in well-trained athletes adapted to long-term training and in non-trained participants. The expression of CCL2 mRNA was evaluated in peripheral blood MNCs and CCL2 protein level was observed in blood plasma. The changes were assessed as the response to an acute, intensive bout of exercise (Wingate Anaerobic Test) in two groups of participants: well-trained soccer players and non-trained individuals. An increase of CCL2 expression inn both mRNA and protein levels was observed. The response was greater in non-trained individuals and elevated levels of CCL2 transcripts persisted for more than 24 h after exercise. Well-trained individuals responded more modestly and the effect was attenuated relatively quickly. This shows muscular adaptation to a continuous training regime in well-trained individuals and better control of immune reactions to muscular injury. In non-training individuals, the induction of the inflammatory response was greater, suggesting presence of more serious myotrauma

    Is Physical Activity an Effective Factor for Modulating Pressure Pain Threshold and Pain Tolerance after Cardiovascular Incidents?

    No full text
    The purpose of this study was to investigate whether regular physical activity can alter the pressure pain threshold, pain tolerance, and subjective pain perception in individuals who have experienced a cardiovascular event. The study involved 85 individuals aged 37 to 84 years (M = 65.36) who qualified for outpatient cardiac rehabilitation, which consisted of 24 physical training sessions. The patients were all tested twice: on the first and last day of the outpatient cardiac rehabilitation program. Assessments of the pressure pain threshold and pain tolerance were performed with an algometer. To assess the pain coping strategies, the Pain Coping Strategies Questionnaire (CSQ) and parenting styles were measured retrospectively with subjective survey questions. The main results of the study showed that patients achieved significantly higher pressure pain thresholds after a physical training cycle (ps 0.05). A lower preference for the better pain coping strategy explanation (ß = −0.42, p = 0.013) and growing up in a family with a less neglectful atmosphere (ß = −0.35, p = 0.008) were associated with increased pressure pain threshold after physical training. The results suggest that physical activity is an important factor in modulating the pressure pain threshold

    Variation in the Ace Gene in Elite Polish Football Players

    No full text
    Purpose. A common polymorphism in the angiotensin converting enzyme I gene (the ACE I/D variant) represents one of the first characterized and the most widely studied genetic variants in the context of elite athletes status and performance related traits. The aim of the study was to determine the genotype and allele distribution of the allele and genotype of the ACE gene in Polish male football players. Methods. The total of 106 Polish male professional football players were recruited. They were divided into groups according to the position in the field: forwards, defenders, midfielders, and goalkeepers. For controls, samples were prepared with 115 unrelated volunteers. DNA was extracted from the buccal cells donated by the subjects, and the PCR amplification of the polymorphic region of the ACE gene containing either the insertion (I) or deletion (D) fragment was performed. Results. The genotype distribution and allele frequencies among all football players did not differ significantly when compared with sedentary control individuals (p = 0.887, p = 0.999, respectively). Likewise, the analysis of forwards, defenders, midfielders, and goalkeepers revealed no significant differences in either ACE genotype or allele frequencies. Conclusions. We did not provide evidence for difference of variation of the ACE I/D polymorphism between Polish football players and controls, as we did not obtain any statistically significantly higher frequency of either of the analysed alleles (I and D) or genotypes (DD, ID, and II) in the studied subgroups. It may be suspected that harbouring of I/D allelic variants of the ACE gene neither decreases nor increases the probability of being a professional football player in Poland

    Interactions between Gene Variants within the COL1A1 and COL5A1 Genes and Musculoskeletal Injuries in Physically Active Caucasian

    No full text
    The COL1A1 and COL5A1 variants have been associated with the risk of musculoskeletal injuries. Therefore, the main aim of the study was to investigate the association between three polymorphisms within two genes (rs1800012 in COL1A1, as well as rs12722 and rs13946 in COL5A1) and the reported, yet rarely described in the literature, injuries of the joint and muscle area in a physically active Caucasian population. Polish students (n = 114) were recruited and divided into the following two groups: students with (n = 53) and without (n = 61) injures. Genotyping was carried out using real-time PCR. The results obtained revealed a statistically significant association between rs1800012 COL1A1 and injury under an overdominant model. Specifically, when adjusted for age and sex, the GT heterozygotes had a 2.2 times higher chance of being injured compared with both homozygotes (TT and GG, 95% CI 0.59–5.07, p = 0.040). However, no significant interaction between the COL5A1 variants, either individually or in haplotype combination, and susceptibility to injury were found. In addition, the gene–gene interaction analysis did not reveal important relationships with the musculoskeletal injury status. It was demonstrated that rs1800012 COL1A1 may be positively associated with physical activity-related injuries in a Caucasian population. Harboring the specific GT genotype may be linked to a higher risk of being injured

    Individual Factors Modifying Postoperative Pain Management in Elective Total Hip and Total Knee Replacement Surgery

    No full text
    Total hip and knee replacements are the most common orthopedic procedures performed due to osteoarthritis. Pain is an intrinsic symptom accompanying osteoarthritis, persisting long before surgery, and continuing during the preoperative and postoperative periods. Appropriate pain management after surgery determines the comfort, duration, and cost of hospitalization, as well as the effectiveness of postoperative rehabilitation. Individual differences in pain perception and tolerance in orthopedic patients remain an important research topic. Therefore, the aim of this study was to investigate the predictors of analgesic requirements (morphine, acetaminophen, and ketoprofen), including individual pain threshold and tolerance, body mass index (BMI), diabetes, and beliefs about pain control in patients undergoing elective hip or knee arthroplasty using a multilevel regression model (N = 147, 85 women, 62 men, 107 after hip replacement, and 40 after knee replacement). Results: Higher pain tolerance was associated with a lower dose of morphine per kg after surgery. Patients undergoing hip surgery received a lower dose of ketoprofen than patients undergoing knee surgery. The more the patient believed in personal pain control, the stronger the negative relationship between pain tolerance and morphine requirement. The lowest doses were given to patients with the highest pain tolerance and the greatest belief in personal control. Factors such as belief in pain control and pain tolerance should be considered in comprehensive postoperative pain management in orthopedic patients to reduce opioid doses and, thus, side effects

    Association Between Total Genotype Score and Muscle Injuries in Top-Level Football Players: a Pilot Study

    No full text
    Abstract Background Recently, genetic predisposition to injury has become a popular area of research and the association between a few single nucleotide polymorphisms (SNPs) and the susceptibility to develop musculoskeletal injuries has been shown. This pilot study aimed to investigate the combined effect of common gene polymorphisms previously associated with muscle injuries in Italian soccer players. Results A total of 64 Italian male top football players (age 23.1 ± 5.5 years; stature 180.2 ± 7.4 cm; weight 73.0 ± 7.9 kg) were genotyped for four gene polymorphisms [ACE I/D (rs4341), ACTN3 c.1729C > T (rs1815739), COL5A1 C > T (rs2722) and MCT1 c.1470A > T (rs1049434)]. Muscle injuries were gathered for 10 years (2009–2019). Buccal swabs were used to obtain genomic DNA, and the PCR method was used to genotype the samples. The combined influence of the four polymorphisms studied was calculated using a total genotype score (TGS: from 0 to 100 arbitrary units; a.u.). A genotype score (GS) of 2 was assigned to the “protective” genotype for injuries, a GS of 1 was assigned to the heterozygous genotype while a GS of 0 was assigned to the “worst” genotype. The distribution of genotype frequencies in the ACE I/D (rs4341), ACTN3 c.1729C > T (rs1815739) and MCT1 c.1470A > T (rs1049434) polymorphisms was different between non-injured and injured football players (p = 0.001; p = 0.016 and p = 0.005, respectively). The incidence of muscle injuries was significantly different among the ACE I/D (rs4341), ACTN3 c.1729C > T (rs1815739) and COL5A1 C > T (rs2722) genotype groups, showing a lower incidence of injuries in the “protective” genotype than “worse” genotype (ACE, p < 0.001; ACTN3, p = 0.005) or intermediate genotype (COL5A1, p = 0.029). The mean TGS in non-injured football players (63.7 ± 13.0 a.u.) was different from that of injured football players (42.5 ± 12.5 a.u., p < 0.001). There was a TGS cut-off point (56.2 a.u.) to discriminate non-injured from injured football players. Players with a TGS beyond this cut-off had an odds ratio of 3.5 (95%CI 1.8–6.8; p < 0.001) to suffer an injury when compared with players with lower TGS. Conclusions These preliminary data suggest that carrying a high number of "protective" gene variants could influence an individual's susceptibility to developing muscle injuries in football. Adapting the training load parameters to the athletes’ genetic profile represents today the new frontier of the methodology of training
    corecore