11 research outputs found

    Numerical and physical modelling approaches to the study of the hydraulic jump and its application in large-dam stilling basins

    Full text link
    [ES] El resalto hidráulico constituye uno de los fenómenos más complejos con aplicación en el campo de la ingeniería hidráulica. Por un lado, las propias características del resalto, entre las que se encuentran las grandes fluctuaciones turbulentas, la intensa entrada de aire y una disipación de energía muy significativa, contribuyen a su complejidad situando el conocimiento actual del fenómeno lejos de una comprensión total del mismo. Por otro lado, es precisamente la naturaleza disipadora de energía del resalto la que da lugar a su principal aplicación práctica. Así pues, la investigación que aquí se presenta trata de contribuir al conocimiento general del resalto hidráulico y su aplicación para disipar energía en cuencos amortiguadores de grandes presas. Para ello, se abordaron las bases del fenómeno mediante la caracterización de un resalto hidráulico clásico (RHC). La investigación se llevó a cabo bajo una doble perspectiva de modelación numérica y física. Se emplearon técnicas de Dinámica de Fluidos Computacional (DFC) para la realización de simulaciones de este resalto hidráulico, a la vez que se llevó a cabo una campaña experimental en un modelo físico específicamente diseñado para tratar el caso. De este modo, se abordaron los aspectos más relevantes del resalto hidráulico, incluyendo el ratio de calados conjugados, la eficiencia del resalto, la longitud de la zona de recirculación, el perfil de la lámina libre, las distribuciones de velocidad y presión, la longitud del resalto y el análisis de frecuencias. Los resultados de los modelos físico y numérico fueron comparados, no solo entre ellos, sino también con información de otros autores procedente de una extensa revisión bibliográfica. Ambos modelos mostraron su capacidad para representar con precisión el fenómeno estudiado. En base a este análisis se observa que la metodología empleada resulta adecuada para la investigación del fenómeno a estudiar. Una vez llevada a cabo la caracterización del RHC, se procedió a analizar un cuenco amortiguador para disipación de energía. En particular, se estudió un caso general y representativo de cuenco amortiguador tipificado USBR II, a partir de la doble perspectiva de modelación física y numérica. Asimismo, los resultados se compararon con datos y expresiones bibliográficas. Esta comparación pretendía evaluar los rasgos particulares del resalto hidráulico en cuencos amortiguadores de grandes presas, así como la influencia de los elementos disipadores de energía en el flujo. Todos los resultados mostraron estar en la línea de las investigaciones de otros autores, más allá de ciertas diferencias relativamente pequeñas. En consecuencia, la metodología desarrollada muestra su utilidad para abordar el estudio del flujo en cuencos amortiguadores. En concreto, los resultados presentados contribuyen a expandir el conocimiento sobre el RHC y el flujo en un cuenco amortiguador tipificado USBR II. Así pues, los resultados pueden emplearse para mejorar el diseño de estructuras de disipación de energía en grandes presas. Durante los últimos años, la adaptación de cuencos amortiguadores a caudales superiores a los empleados para su diseño ha ganado gran relevancia. Esta adaptación resulta clave por los efectos del cambio climáticos y las crecientes exigencias de la sociedad en materia de seguridad y protección frente a avenidas. De este modo, toda contribución a la modelación de resaltos hidráulicos, como la que aquí se presenta, resulta crucial para afrontar el reto de la adaptación de las estructuras hidráulicas para disipación de energía.[EN] The hydraulic jump constitutes one of the most complex phenomena with application in hydraulic engineering. On the one hand, a series of features bound to the hydraulic jump nature, such as the large turbulent fluctuations, the intense air entrainment and the significant energy dissipation, contribute to build its complexity, which places the current knowledge far from a full understanding of the phenomenon. On the other hand, it is precisely this energy dissipating nature that justifies its use in large-dam stilling basins, which constitutes its main practical application. Hence, the research here presented aimed to contribute to the general knowledge of the hydraulic jump phenomenon and its application for energy dissipation purposes in large-dam stilling basins. To this end, the bases of the phenomenon were addressed by characterising a classical hydraulic jump (CHJ). The research was conducted under a double numerical and physical modelling approach. Computational Fluid Dynamics (CFD) techniques were employed to simulate the hydraulic jump, whereas an experimental campaign in a physical model designed for the purpose was carried out too. The most relevant hydraulic jump characteristics were investigated, including sequent depths ratio, hydraulic jump efficiency, roller length, free surface profile, distributions of velocity and pressure, hydraulic jump length and fluctuating variables. The results from the physical and the numerical models were compared not only between them, but also with bibliographic information coming from an extensive literature review. It was found that both modelling approaches were able to accurately represent the phenomenon under study. Once the characterisation of the CHJ was carried out, the analysis of an energy dissipation stilling basin was developed. In particular, a general and representative case study consisting in a typified USBR II stilling basin was analysed through a physical and numerical modelling approach. In addition, the modelled results were compared with data and expressions coming from a bibliographic review. This comparison was intended to assess the particular characteristics of the hydraulic jump in a large-dam stilling basin, as well as the affection of the energy dissipation devices to the flow. The results revealed not only similarities to the CHJ, but also the influence of the energy dissipation devices existing in the stilling basin, all in good agreement with bibliographic information, despite some slight differences. Consequently, the presented modelling approach showed to be a useful tool to address free surface flows occurring in stilling basins. In particular, the results reported contribute to the enhancement of the knowledge concerning the CHJ and the flow in a typified USBR II stilling basin. These results can be used to improve the design of large-dam energy dissipation structures. This is a key issue in hydraulic engineering, especially in the recent years. Thus, there is an increasing urgency for the adaptation of existing stilling basins, which must cope with higher discharges than those considered in their original design. The adaptation of these structures becomes even more important due to climate change effects and increasing society demands regarding security and flood protection. In these terms, contributions to hydraulic jump modelling, as the ones presented in this research, are crucial to face the challenge of energy dissipation structures adaptation.[CA] El ressalt hidràulic constitueix un dels fenòmens de major complexitat amb aplicació en el camp de l'enginyeria hidràulica. D'una banda, les característiques del propi ressalt, com poden ser les grans fluctuacions turbulentes, la intensa entrada d'aire i una dissipació d'energia molt significativa, contribueixen a la seua complexitat, de manera que el coneixement actual del ressalt està lluny d'una comprensió total del mateix. D'altra banda, és precisament la gran dissipació d'energia associada al ressalt la que motiva la seua principal aplicació pràctica. La investigació que ací es presenta tracta de contribuir al coneixement general del ressalt hidràulic i la seua aplicació per dissipar energia al vas esmorteïdor de grans preses. En primer lloc, s'abordaren les bases del fenomen mitjançant la caracterització d'un ressalt hidràulic clàssic (RHC). La investigació es va dur a terme sota una doble perspectiva de modelització física i numèrica. El ressalt hidràulic es va simular emprant tècniques de Dinàmica de Fluids Computacional (DFC), mentre paral·lelament es desenvolupava una campanya experimental amb un model físic específicament dissenyat per tractar aquest cas. D'aquesta manera, es van abordar els aspectes més rellevants del ressalt, incloent el ràtio de calats conjugats, l'eficiència, la llargària de la regió de recirculació, el perfil de la superfície lliure, les distribucions de velocitat i pressió, la llargària del ressalt i l'anàlisi de freqüències. Els resultats dels models físic i numèric es compararen, no solament entre ells, sinó també amb informació procedent d'una extensa revisió bibliogràfica. Ambdós models van mostrar la seua capacitat per reproduir amb precisió el fenomen estudiat. Prenent aquest anàlisi, s'observa que la metodologia desenvolupada resulta apropiada per investigar fenòmens com el ressalt hidràulic. Caracteritzat el RHC, s'analitzà un vas esmorteïdor amb funció dissipadora d'energia. Concretament, s'estudià un cas general i representatiu de vas esmorteïdor tipificat USBR II, partint de la doble perspectiva de modelització física i numèrica. Així mateix, els resultats es van comparar amb dades i expressions bibliogràfiques. Aquesta comparació pretenia avaluar les particularitats del ressalt hidràulic al vas esmorteïdor de grans preses, així com la influència al flux dels elements dissipadors d'energia. D'aquesta manera, els resultats es situaren en la línia d'investigacions d'altes autors, més enllà de les lleugeres diferències reportades. En conseqüència, la metodologia desenvolupada mostra la seua utilitat per abordar l'estudi del flux en estructures de dissipació d'energia. En particular, els resultats contribueixen a expandir el coneixement relatiu al RHC i al flux en un vas esmorteïdor tipificat USBR II. Així, aquests resultats poden ser utilitzats per millorar el disseny de les estructures de dissipació d'energia de grans preses. Durant els últims anys, l'adaptació de vasos esmorteïdors a cabals superiors als considerats en la seua fase de disseny ha guanyat especial rellevància. Aquesta adaptació resulta crucial pels efectes del canvi climàtic i les creixents demandes de la societat en matèria de seguretat i protecció front a inundacions. En definitiva, tota contribució a la modelització de ressalts hidràulics, com la que ací es presenta, és de gran importància per afrontar el repte de l'adaptació d'estructures hidràuliques dissipadores d'energia.The research here presented was funded by ‘Generalitat Valenciana predoctoral grants (Grant number [2015/7521])’, in collaboration with the European Social Funds and by the research project ‘La aireación del flujo y su implementación en prototipo para la mejora de la disipación de energía de la lámina vertiente por resalto hidráulico en distintos tipos de presas’ (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy in cooperation with European FEDER funds.Macián Pérez, JF. (2020). Numerical and physical modelling approaches to the study of the hydraulic jump and its application in large-dam stilling basins [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149565TESI

    Assessment of the Performance of a Modified USBR Type II Stilling Basin by a Validated CFD Model

    Full text link
    [EN] The adaptation of existing dams is of paramount importance to face the challenge posed by climate change and new legal frameworks. Thus, it is crucial to optimize the design of stilling basins to reduce the hydraulic jump dimensions without jeopardizing the energy dissipation in the structure. A numerical model was developed to simulate a US Bureau of Reclamation Type II basin. The model was validated with a specifically designed physical model and then was used to simulate and test the performance of the basin after adding a second row of chute blocks. The results showed a reduction in the hydraulic jump dimensions in terms of the sequent depth ratio and the roller length, which were respectively 2.5% and 1.4% lower in the modified design. These results would allow an estimated increase of the discharge in the basin close to 10%. Furthermore, this new design had 1.2% higher efficiency. Consequently, the modifications proposed for the basin design suggest improved performance of the structure. The issue of the hydraulic jump length estimation also was discussed, and different approaches were introduced and compared. These methods follow a structured and systematic procedure and gave consistent results for the developed models.The authors acknowledge the collaboration of the Hydraulics Laboratory of the Department of Hydraulic Engineering and Environment from Universitat Politecnica de Valencia (UPV) and their technicians Juan Carlos Edo and Joaquin Oliver in the construction of the experimental device used for the numerical model setup and validation. The work was supported by the research project "La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas" (BIA2017-85412-C2-1-R), funded by the Spanish Agencia Estatal de Investigacion and FEDER.Macián-Pérez, JF.; Vallés-Morán, FJ.; García-Bartual, R. (2021). Assessment of the Performance of a Modified USBR Type II Stilling Basin by a Validated CFD Model. Journal of Irrigation and Drainage Engineering. 147(11):1-12. https://doi.org/10.1061/(ASCE)IR.1943-4774.00016231121471

    Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach

    Full text link
    [EN] Adaptation of stilling basins to higher discharges than those considered for their design implies deep knowledge of the flow developed in these structures. To this end, the hydraulic jump occurring in a typified United States Bureau of Reclamation Type II (USBR II) stilling basin was analyzed using a numerical and experimental modeling approach. A reduced-scale physical model to conduct an experimental campaign was built and a numerical computational fluid dynamics (CFD) model was prepared to carry out the corresponding simulations. Both models were able to successfully reproduce the case study in terms of hydraulic jump shape, velocity profiles, and pressure distributions. The analysis revealed not only similarities to the flow in classical hydraulic jumps but also the influence of the energy dissipation devices existing in the stilling basin, all in good agreement with bibliographical information, despite some slight differences. Furthermore, the void fraction distribution was analyzed, showing satisfactory performance of the physical model, although the numerical approach presented some limitations to adequately represent the flow aeration mechanisms, which are discussed herein. Overall, the presented modeling approach can be considered as a useful tool to address the analysis of free surface flows occurring in stilling basins.This research was funded by 'Generalitat Valenciana predoctoral grants (Grant number [2015/7521])', in collaboration with the European Social Funds and by the research project: 'La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas' (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.Macián Pérez, JF.; García-Bartual, R.; Huber, B.; Bayón, A.; Vallés-Morán, FJ. (2020). Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water. 12(1):1-20. https://doi.org/10.3390/w12010227S120121Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Chanson, H. (2008). Turbulent air–water flows in hydraulic structures: dynamic similarity and scale effects. Environmental Fluid Mechanics, 9(2), 125-142. doi:10.1007/s10652-008-9078-3Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Chanson, H. (2013). Hydraulics of aerated flows:qui pro quo? Journal of Hydraulic Research, 51(3), 223-243. doi:10.1080/00221686.2013.795917Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041Teuber, K., Broecker, T., Bayón, A., Nützmann, G., & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, An International Journal, 19(6), 368. doi:10.1504/pcfd.2019.103266Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-3Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. doi:10.1080/00221686.1999.9628267Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583-607. doi:10.1016/s0301-9322(99)00016-6Murzyn, F., Mouaze, D., & Chaplin, J. R. (2005). Optical fibre probe measurements of bubbly flow in hydraulic jumps. International Journal of Multiphase Flow, 31(1), 141-154. doi:10.1016/j.ijmultiphaseflow.2004.09.004Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environmental Fluid Mechanics, 7(3), 217-238. doi:10.1007/s10652-006-9016-1Chanson, H., & Gualtieri, C. (2008). Similitude and scale effects of air entrainment in hydraulic jumps. Journal of Hydraulic Research, 46(1), 35-44. doi:10.1080/00221686.2008.9521841Ho, D. K. H., & Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6(1), 81-104. doi:10.1080/14488353.2010.11463946Dong, Wang, Vetsch, Boes, & Tan. (2019). Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water, 11(10), 1956. doi:10.3390/w11101956Toso, J. W., & Bowers, C. E. (1988). Extreme Pressures in Hydraulic‐Jump Stilling Basins. Journal of Hydraulic Engineering, 114(8), 829-843. doi:10.1061/(asce)0733-9429(1988)114:8(829)Houichi, L., Ibrahim, G., & Achour, B. (2006). Experiments for the Discharge Capacity of the Siphon Spillway Having the Creager-Ofitserov Profile. International Journal of Fluid Mechanics Research, 33(5), 395-406. doi:10.1615/interjfluidmechres.v33.i5.10Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5Bombardelli, F. A., Meireles, I., & Matos, J. (2010). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263-288. doi:10.1007/s10652-010-9188-6Pope, S. B. (2001). Turbulent Flows. Measurement Science and Technology, 12(11), 2020-2021. doi:10.1088/0957-0233/12/11/705Harlow, F. H. (1967). Turbulence Transport Equations. Physics of Fluids, 10(11), 2323. doi:10.1063/1.1762039Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2), 131-137. doi:10.1016/0094-4548(74)90150-7Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Li, S., & Zhang, J. (2018). Numerical Investigation on the Hydraulic Properties of the Skimming Flow over Pooled Stepped Spillway. Water, 10(10), 1478. doi:10.3390/w10101478Zhang, W., Wang, J., Zhou, C., Dong, Z., & Zhou, Z. (2018). Numerical Simulation of Hydraulic Characteristics in A Vortex Drop Shaft. Water, 10(10), 1393. doi:10.3390/w10101393Xiang, M., Cheung, S. C. P., Tu, J. Y., & Zhang, W. H. (2014). A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps. Ocean Engineering, 91, 51-63. doi:10.1016/j.oceaneng.2014.08.016Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953Cartellier, A., & Achard, J. L. (1991). Local phase detection probes in fluid/fluid two‐phase flows. Review of Scientific Instruments, 62(2), 279-303. doi:10.1063/1.1142117Cartellier, A., & Barrau, E. (1998). Monofiber optical probes for gas detection and gas velocity measurements: conical probes. International Journal of Multiphase Flow, 24(8), 1265-1294. doi:10.1016/s0301-9322(98)00032-9Boyer, C., Duquenne, A.-M., & Wild, G. (2002). Measuring techniques in gas–liquid and gas–liquid–solid reactors. Chemical Engineering Science, 57(16), 3185-3215. doi:10.1016/s0009-2509(02)00193-8Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Hager, W. H., & Li, D. (1992). Sill-controlled energy dissipator. Journal of Hydraulic Research, 30(2), 165-181. doi:10.1080/00221689209498932Bakhmeteff, B. A., & Matzke, A. E. (1936). The Hydraulic Jump in Terms of Dynamic Similarity. Transactions of the American Society of Civil Engineers, 101(1), 630-647. doi:10.1061/taceat.0004708Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., … Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099

    Characterization of rating curves in dam bottom outlets using CFD modeling

    Full text link
    [EN] The flow in dam bottom outlets constitutes a complex phenomenon due to its extraordinary dimensions and singularities, as well as to the dramatic consequences of an eventual failure. A numerical methodology is presented to characterize the rating curves of this kind of structures according to the position of their regulation devices. To this end, a CFD model is developed using a RANS k-¿ RNG turbulence model and a VOF method to deal with the expectable presence of air. The results are physically coherent with the phenomenon, although a validation based on field observation has not been conducted yet.[ES] El flujo en desagües profundos de presas constituye un fenómeno complejo debido a sus grandes dimensiones, así como a las dramáticas consecuencias de un eventual fallo. Se presenta una metodología numérica para caracterizar las curvas de gasto de este tipo de estructuras según la posición de sus elementos de regulación. Para ello, se desarrolla un modelo CFD empleando un modelo de turbulencia RANS k-¿ RNG y un método VOF para tratar la presencia de aire. Los resultados muestran coherencia con la física del fenómeno, aunque no se ha llevado a cabo todavía una validación basada en observaciones de campoEste trabajo ha sido financiado por el proyecto “Análisis fluidodinámico del desagüe de fondo de la Presa de Mequinenza”, fruto de la colaboración entre la Universitat Politècnica de València y Endesa Generación S.A.Bayón, A.; Macián Pérez, JF.; Río, F.; Conesa, FJ.; García-Lorenzana, D. (2018). Caracterización de curvas de gasto en desagües profundos de presas mediante modelado CFD. Revista Hidrolatinoamericana de Jóvenes Investigadores y Profesionales. 2:19-21. http://hdl.handle.net/10251/121784S1921

    Characterization of Structural Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches

    Full text link
    [EN] A classical hydraulic jump with Froude number (Fr1=6) and Reynolds number (Re1=210,000) was characterized using the computational fluid dynamics (CFD) codes OpenFOAM and FLOW-3D, whose performance was assessed. The results were compared with experimental data from a physical model designed for this purpose. The most relevant hydraulic jump characteristics were investigated, including hydraulic jump efficiency, roller length, free surface profile, distributions of velocity and pressure, and fluctuating variables. The model outcome was also compared with previous results from the literature. Both CFD codes were found to represent with high accuracy the hydraulic jump surface profile, roller length, efficiency, and sequent depths ratio, consistently with previous research. Some significant differences were found between both CFD codes regarding velocity distributions and pressure fluctuations, although in general the results agree well with experimental and bibliographical observations. This finding makes models with these characteristics suitable for engineering applications involving the design and optimization of energy dissipation devices.The research presented herein was possible thanks to the Generalitat Valenciana predoctoral grants [Ref. (2015/7521)], in collaboration with the European Social Funds and to the research project La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.Macián Pérez, JF.; Bayón, A.; García-Bartual, R.; López Jiménez, PA.; Vallés-Morán, FJ. (2020). Characterization of Structural Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches. Journal of Hydraulic Engineering. 146(12):1-13. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001820S11314612Abdul Khader, M. H., & Elango, K. (1974). TURBULENT PRESSURE FIELD BENEATH A HYDRAULIC JUMP. Journal of Hydraulic Research, 12(4), 469-489. doi:10.1080/00221687409499725Bakhmeteff B. A. and A. E. Matzke. 1936. “The hydraulic jump in terms of dynamic similarity.” In Vol. 101 of Proc. American Society of Civil Engineers 630–647. Reston VA: ASCE.Bayon A. 2017. “Numerical analysis of air-water flows in hydraulic structures using computational fluid dynamics (CFD).” Ph.D. thesis Research Institute of Water and Environmental Engineering Universitat Politècnica de València.Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041Bayon A. J. F. Macián-Pérez F. J. Vallés-Morán and P. A. López-Jiménez. 2019. “Effect of RANS turbulence model in hydraulic jump CFD simulations.” In E-proc. 38th IAHR World Congress. Panama City Panama: Spanish Ministry of Economy.Bayon, A., Toro, J. P., Bombardelli, F. A., Matos, J., & López-Jiménez, P. A. (2018). Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways. Journal of Hydro-environment Research, 19, 137-149. doi:10.1016/j.jher.2017.10.002Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., … Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011Biswas, R., & Strawn, R. C. (1998). Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics, 26(1-2), 135-151. doi:10.1016/s0168-9274(97)00092-5Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Bombardelli, F. A., Meireles, I., & Matos, J. (2010). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263-288. doi:10.1007/s10652-010-9188-6Bradshaw, P. (1997). Understanding and prediction of turbulent flow—1996. International Journal of Heat and Fluid Flow, 18(1), 45-54. doi:10.1016/s0142-727x(96)00134-8Caishui, H. (2012). Three-dimensional Numerical Analysis of Flow Pattern in Pressure Forebay of Hydropower Station. Procedia Engineering, 28, 128-135. doi:10.1016/j.proeng.2012.01.694Castillo L. G. J. M. Carrillo J. T. García and A. Vigueras-Rodríguez. 2014. “Numerical simulations and laboratory measurements in hydraulic jumps.” In Proc. 11th Int. Conf. of Hydroinformatics. New York: Spanish Ministry of Economy.Castro-Orgaz, O., & Hager, W. H. (2009). Classical hydraulic jump: basic flow features. Journal of Hydraulic Research, 47(6), 744-754. doi:10.3826/jhr.2009.3610Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Chanson, H. (2006). Bubble entrainment, spray and splashing at hydraulic jumps. Journal of Zhejiang University-SCIENCE A, 7(8), 1396-1405. doi:10.1631/jzus.2006.a1396Chanson, H. (2009). Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. European Journal of Mechanics - B/Fluids, 28(2), 191-210. doi:10.1016/j.euromechflu.2008.06.004Chanson, H. (2013). Hydraulics of aerated flows:qui pro quo? Journal of Hydraulic Research, 51(3), 223-243. doi:10.1080/00221686.2013.795917Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583-607. doi:10.1016/s0301-9322(99)00016-6Chanson, H., & Gualtieri, C. (2008). Similitude and scale effects of air entrainment in hydraulic jumps. Journal of Hydraulic Research, 46(1), 35-44. doi:10.1080/00221686.2008.9521841Chanson, H., & Montes, J. S. (1995). Characteristics of Undular Hydraulic Jumps: Experimental Apparatus and Flow Patterns. Journal of Hydraulic Engineering, 121(2), 129-144. doi:10.1061/(asce)0733-9429(1995)121:2(129)Cheng, C.-K., Tai, Y.-C., & Jin, Y.-C. (2017). Particle Image Velocity Measurement and Mesh-Free Method Modeling Study of Forced Hydraulic Jumps. Journal of Hydraulic Engineering, 143(9), 04017028. doi:10.1061/(asce)hy.1943-7900.0001325Dong, Wang, Vetsch, Boes, & Tan. (2019). Numerical Simulation of Air–Water Two-Phase Flow on Stepped Spillways Behind X-Shaped Flaring Gate Piers under Very High Unit Discharge. Water, 11(10), 1956. doi:10.3390/w11101956Fuentes-Pérez, J. F., Silva, A. T., Tuhtan, J. A., García-Vega, A., Carbonell-Baeza, R., Musall, M., & Kruusmaa, M. (2018). 3D modelling of non-uniform and turbulent flow in vertical slot fishways. Environmental Modelling & Software, 99, 156-169. doi:10.1016/j.envsoft.2017.09.011Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environmental Fluid Mechanics, 7(3), 217-238. doi:10.1007/s10652-006-9016-1Hager, W. H. (1992). Energy Dissipators and Hydraulic Jump. Water Science and Technology Library. doi:10.1007/978-94-015-8048-9Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5Ho, D. K. H., & Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6(1), 81-104. doi:10.1080/14488353.2010.11463946Jesudhas, V., Balachandar, R., Roussinova, V., & Barron, R. (2018). Turbulence Characteristics of Classical Hydraulic Jump Using DES. Journal of Hydraulic Engineering, 144(6), 04018022. doi:10.1061/(asce)hy.1943-7900.0001427Jesudhas, V., Roussinova, V., Balachandar, R., & Barron, R. (2017). Submerged Hydraulic Jump Study Using DES. Journal of Hydraulic Engineering, 143(3), 04016091. doi:10.1061/(asce)hy.1943-7900.0001231KIM, J. (2004). A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k?? turbulence model. Atmospheric Environment, 38(19), 3039-3048. doi:10.1016/j.atmosenv.2004.02.047Kim, S.-E., & Boysan, F. (1999). Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics, 81(1-3), 145-158. doi:10.1016/s0167-6105(99)00013-6Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099)Langhi, M., & Hosoda, T. (2018). Three-dimensional unsteady RANS model for hydraulic jumps. ISH Journal of Hydraulic Engineering, 1-8. doi:10.1080/09715010.2018.1555775Liu, M., Rajaratnam, N., & Zhu, D. Z. (2004). Turbulence Structure of Hydraulic Jumps of Low Froude Numbers. Journal of Hydraulic Engineering, 130(6), 511-520. doi:10.1061/(asce)0733-9429(2004)130:6(511)Liu, T., Song, L., Fu, W., Wang, G., Lin, Q., Zhao, D., & Yi, B. (2018). Experimental Study on Single-Hole Injection of Kerosene into Pressurized Quiescent Environments. Journal of Energy Engineering, 144(3), 04018014. doi:10.1061/(asce)ey.1943-7897.0000536Ma, J., Oberai, A. A., Lahey, R. T., & Drew, D. A. (2011). Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models. Heat and Mass Transfer, 47(8), 911-919. doi:10.1007/s00231-011-0867-8McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)McDonald P. W. 1971. “The computation of transonic flow through two-dimensional gas turbine cascades.” In Proc. ASME 1971 Int. Gas Turbine Conf. and Products Show. Houston: International Gas Turbine Institute.Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. doi:10.1080/00221686.1999.9628267Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Resch, F. J., & Leutheusser, H. J. (1972). Le ressaut hydraulique : mesures de turbulence dans la région diphasique. La Houille Blanche, 58(4), 279-293. doi:10.1051/lhb/1972021Sarfaraz M. and J. Attari. 2011. “Numerical simulation of uniform flow region over a steeply sloping stepped spillway.” In Proc. 6th National Congress on Civil Engineering. Semnan Iran: Iran Water and Power Development Company.Spalart, P. . (2000). Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 21(3), 252-263. doi:10.1016/s0142-727x(00)00007-2Speziale, C. G., & Thangam, S. (1992). Analysis of an RNG based turbulence model for separated flows. International Journal of Engineering Science, 30(10), 1379-IN4. doi:10.1016/0020-7225(92)90148-aSpoljaric A. 1984. “Dynamic characteristics of the load on the bottom plate under hydraulic jump.” In Proc. Int. Conf. Hydrosoft’84: Hydraulic Engineering Software. New York: Elsevier.Teuber, K., Broecker, T., Bayón, A., Nützmann, G., & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, An International Journal, 19(6), 368. doi:10.1504/pcfd.2019.103266Toso, J. W., & Bowers, C. E. (1988). Extreme Pressures in Hydraulic‐Jump Stilling Basins. Journal of Hydraulic Engineering, 114(8), 829-843. doi:10.1061/(asce)0733-9429(1988)114:8(829)Valero D. and D. B. Bung. 2015. “Hybrid investigations of air transport processes in moderately sloped stepped spillway flows.” In Vol. 28 of E-proc. 36th IAHR World Congress 1–10. The Hague Netherlands: IHE Delft.Valero, D., & Bung, D. B. (2016). Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow. Environmental Modelling & Software, 82, 218-228. doi:10.1016/j.envsoft.2016.04.030Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028von Kármán T. 1930. “Mechanische Ähnlichkeit und Turbulenz.” In Proc. 3rd Int. Congress on Applied Mechanics. New York: Springer.Wang H. 2014. “Turbulence and air entrainment in hydraulic jumps.” Ph.D. thesis Dept. of Civil Engineering Univ. of Queensland.Wang, H., & Chanson, H. (2013). Air entrainment and turbulent fluctuations in hydraulic jumps. Urban Water Journal, 12(6), 502-518. doi:10.1080/1573062x.2013.847464Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620. doi:10.1063/1.168744Witt, A., Gulliver, J., & Shen, L. (2015). Simulating air entrainment and vortex dynamics in a hydraulic jump. International Journal of Multiphase Flow, 72, 165-180. doi:10.1016/j.ijmultiphaseflow.2015.02.012Wu, J., Zhou, Y., & Ma, F. (2018). Air entrainment of hydraulic jump aeration basin. Journal of Hydrodynamics, 30(5), 962-965. doi:10.1007/s42241-018-0088-4Xiang, M., Cheung, S. C. P., Tu, J. Y., & Zhang, W. H. (2014). A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps. Ocean Engineering, 91, 51-63. doi:10.1016/j.oceaneng.2014.08.016Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-

    Design of hydraulic installations using computational fluid dynamics (CFD)

    Full text link
    [ES] La cuantificación de pérdidas de carga causadas por elementos singulares en instalaciones hidráulicas no puede realizarse determinísticamente, por lo que debe llevarse a cabo su ensayo en laboratorio. No obstante, para el diseño del banco de ensayos es necesario estimar dichas pérdidas. En el presente trabajo, se plantea un método iterativo apoyado en un modelo de dinámica de fluidos computacional (CFD). En concreto, se emplea el caso de una instalación para un tubo Venturi y la plataforma de código abierto OpenFOAM con cierre de turbulencia Standard k-ε, obteniéndose así una instalación correctamente dimensionada para el análisis del rango de caudales deseado.[EN] The quantification of energy losses caused by singularities in hydraulic facilities cannot be deterministically conducted. To do so, laboratory tests must be performed. However, in order to design the necessary test benches, the losses to assess must be estimated. In the work presented herein, an iterative method supported by a computational fluid dynamics (CFD) model is presented. In particular, the case of facility for a Venturi tube is employed, along with the open-source code OpenFOAM, using the RNG k-¿ turbulence closure. As a result, a well-designed facility capable of supplying the desired range of flowrates is obtainedEsta investigación ha sido posible en el marco del proyecto HIDRASENSE (Plan Estatal de I+D+i MINECO, Convocatoria Retos-Colaboración 2014).Bayón, A.; Vallés-Morán, FJ.; Macián Pérez, JF.; López Jiménez, PA. (2017). Diseño de instalaciones hidráulicas experimentales con apoyo de la dinámica de fluidos computacional (CFD). Revista Hidrolatinoamericana de Jóvenes Investigadores y Profesionales. (1):23-26. http://hdl.handle.net/10251/112710S2326

    Experimental Characterization of the Hydraulic Jump Profile and Velocity Distribution in a Stilling Basin Physical Model

    Full text link
    [EN] The study of the hydraulic jump developed in stilling basins is complex to a high degree due to the intense velocity and pressure fluctuations and the significant air entrainment. It is this complexity, bound to the practical interest in stilling basins for energy dissipation purposes, which brings the importance of physical modeling into the spotlight. However, despite the importance of stilling basins in engineering, bibliographic studies have traditionally focused on the classical hydraulic jump. Therefore, the objective of this research was to study the characteristics of the hydraulic jump in a typified USBR II stilling basin, through a physical model. The free surface profile and the velocity distribution of the hydraulic jump developed within this structure were analyzed in the model. To this end, an experimental campaign was carried out, assessing the performance of both, innovative techniques such as the time-of-flight camera and traditional instrumentation like the Pitot tube. The results showed a satisfactory representation of the free surface profile and the velocity distribution, despite some discussed limitations. Furthermore, the instrumentation employed revealed the important influence of the energy dissipation devices on the flow properties. In particular, relevant di erences were found for the hydraulic jump shape and the maximum velocity positions within the measured vertical profiles, when compared to classical hydraulic jumps.This research was funded by 'Generalitat Valenciana predoctoral grants (Grant number [2015/7521])', in collaboration with the European Social Funds and by the research project: 'La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas' (BIA2017-85412-C2-1-R), funded by the Spanish Ministry of Economy.Macián Pérez, JF.; Vallés-Morán, FJ.; Sánchez Gómez, S.; De-Rossi-Estrada, M.; García-Bartual, R. (2020). Experimental Characterization of the Hydraulic Jump Profile and Velocity Distribution in a Stilling Basin Physical Model. Water. 12(6):1-20. https://doi.org/10.3390/w12061758S120126Valero, D., Viti, N., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment. Water, 11(1), 36. doi:10.3390/w11010036Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018Wang, H., & Chanson, H. (2015). Experimental Study of Turbulent Fluctuations in Hydraulic Jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi:10.1061/(asce)hy.1943-7900.0001010Padulano, R., Fecarotta, O., Del Giudice, G., & Carravetta, A. (2017). Hydraulic Design of a USBR Type II Stilling Basin. Journal of Irrigation and Drainage Engineering, 143(5), 04017001. doi:10.1061/(asce)ir.1943-4774.0001150Macián-Pérez, J. F., García-Bartual, R., Huber, B., Bayon, A., & Vallés-Morán, F. J. (2020). Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water, 12(1), 227. doi:10.3390/w12010227Montes, J. S., & Chanson, H. (1998). Characteristics of Undular Hydraulic Jumps: Experiments and Analysis. Journal of Hydraulic Engineering, 124(2), 192-205. doi:10.1061/(asce)0733-9429(1998)124:2(192)Ohtsu, I., Yasuda, Y., & Gotoh, H. (2001). Hydraulic condition for undular-jump formations. Journal of Hydraulic Research, 39(2), 203-209. doi:10.1080/00221680109499821Ohtsu, I., Yasuda, Y., & Gotoh, H. (2003). Flow Conditions of Undular Hydraulic Jumps in Horizontal Rectangular Channels. Journal of Hydraulic Engineering, 129(12), 948-955. doi:10.1061/(asce)0733-9429(2003)129:12(948)Bakhmeteff, B. A., & Matzke, A. E. (1936). The Hydraulic Jump in Terms of Dynamic Similarity. Transactions of the American Society of Civil Engineers, 101(1), 630-647. doi:10.1061/taceat.0004708Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896-909. doi:10.1016/j.expthermflusci.2011.01.009Zhang, G., Wang, H., & Chanson, H. (2012). Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189-204. doi:10.1007/s10652-012-9254-3Montano, L., Li, R., & Felder, S. (2018). Continuous measurements of time-varying free-surface profiles in aerated hydraulic jumps with a LIDAR. Experimental Thermal and Fluid Science, 93, 379-397. doi:10.1016/j.expthermflusci.2018.01.016Montano, L., & Felder, S. (2020). LIDAR Observations of Free-Surface Time and Length Scales in Hydraulic Jumps. Journal of Hydraulic Engineering, 146(4), 04020007. doi:10.1061/(asce)hy.1943-7900.0001706Rajaratnam, N. (1965). The Hydraulic Jump as a Well Jet. Journal of the Hydraulics Division, 91(5), 107-132. doi:10.1061/jyceaj.0001299McCorquodale, J. A., & Khalifa, A. (1983). Internal Flow in Hydraulic Jumps. Journal of Hydraulic Engineering, 109(5), 684-701. doi:10.1061/(asce)0733-9429(1983)109:5(684)Viti, N., Valero, D., & Gualtieri, C. (2018). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. doi:10.3390/w11010028Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software, 33, 1-22. doi:10.1016/j.envsoft.2012.02.001Carrillo, J. M., Castillo, L. G., Marco, F., & García, J. T. (2020). Experimental and Numerical Analysis of Two-Phase Flows in Plunge Pools. Journal of Hydraulic Engineering, 146(6), 04020044. doi:10.1061/(asce)hy.1943-7900.0001763Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306. doi:10.1080/00221686.2011.578914Chanson, H. (2006). Bubble entrainment, spray and splashing at hydraulic jumps. Journal of Zhejiang University-SCIENCE A, 7(8), 1396-1405. doi:10.1631/jzus.2006.a1396Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research, 27(5), 565-585. doi:10.1080/00221688909499111Meftah, M. B., De Serio, F., Mossa, M., & Pollio, A. (2008). Experimental study of recirculating flows generated by lateral shock waves in very large channels. Environmental Fluid Mechanics, 8(3), 215-238. doi:10.1007/s10652-008-9057-8Ben Meftah, M., Mossa, M., & Pollio, A. (2010). Considerations on shock wave/boundary layer interaction in undular hydraulic jumps in horizontal channels with a very high aspect ratio. European Journal of Mechanics - B/Fluids, 29(6), 415-429. doi:10.1016/j.euromechflu.2010.07.002Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), 591-608. doi:10.1080/00221689009499048Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity Profiles of Developing and Developed Open Channel Flow. Journal of Hydraulic Engineering, 123(12), 1099-1105. doi:10.1061/(asce)0733-9429(1997)123:12(1099

    Generación de resaltos hidráulicos de alto número de Froude a partir de regímenes rápidos emulsionados. Una investigación experimental

    Full text link
    [ES] En el caso de la modelación física descrita en esta comunicación, los primeros ensayos de laboratorio se llevaron a cabo en un dispositivo experimental diseñado ad hoc para la generación de este tipo de resaltos. Sin embargo, como su diseño es complejo y la alimentación en flujo mixto agua-aire no está exenta de dificultades, se decidió en su momento construir un canal de menores dimensiones, con el que iniciar la campaña experimental e ir adquiriendo conocimiento en este campo. Este canal se construyó en el Laboratorio de Hidráulica del Departamento de Ingeniería Hidráulica y Medio Ambiente (DIHMA) de la UPV.Esta investigación ha sido posible en el marco del Proyecto EMULSIONA (Plan Nacional I+D. MINECO, Convocatoria 2011)Vallés-Morán, FJ.; Nacher Rodriguez, B.; Bayón, A.; Macián Pérez, JF.; Marco Segura, JB.; López Jiménez, PA. (2015). Generación de resaltos hidráulicos de alto número de Froude a partir de regímenes rápidos emulsionados. Una investigación experimental. Universidad de Córdoba. 0-0. http://hdl.handle.net/10251/142695S0

    Numerical modeling of hydraulic jumps at negative steps to improve energy dissipation in stilling basins

    No full text
    Abstract The performance of stilling basins including a negative step was analyzed addressing its effect on the energy dissipation efficiency, dimensions and structural properties of the hydraulic jump, streambed pressures and pressure fluctuations. Six different cases were simulated, considering two possible relative heights for the step and three possible Froude numbers. The results show that the step yields to lower subcritical depths, allowing smaller basin dimensions. Nevertheless, it tends to slightly increase the roller length of the jump. Concerning the relative energy dissipation, results confirm the improvement derived from the step presence. The internal flow occurring in the jump was also analyzed, and more specifically the subzones generated upstream and downstream the impingement point. The results prove the contribution of the negative step in the stabilization of hydraulic jumps in the stilling basin. In particular, a general decrease of the streambed pressure is observed. In addition, pressure fluctuations are significantly reduced due to the negative step size influence on the hydraulic jump. Furthermore, the effectiveness of the computational fluid dynamics (CFD) techniques to simulate stilling basin flows and to adequately characterize the hydraulic jump performance was confirmed

    Numerical modeling of hydraulic jumps at negative steps to improve energy dissipation in stilling basins

    Full text link
    [EN] The performance of stilling basins including a negative step was analyzed addressing its effect on the energy dissipation efficiency, dimensions and structural properties of the hydraulic jump, streambed pressures and pressure fluctuations. Six different cases were simulated, considering two possible relative heights for the step and three possible Froude numbers. The results show that the step yields to lower subcritical depths, allowing smaller basin dimensions. Nevertheless, it tends to slightly increase the roller length of the jump. Concerning the relative energy dissipation, results confirm the improvement derived from the step presence. The internal flow occurring in the jump was also analyzed, and more specifically the subzones generated upstream and downstream the impingement point. The results prove the contribution of the negative step in the stabilization of hydraulic jumps in the stilling basin. In particular, a general decrease of the streambed pressure is observed. In addition, pressure fluctuations are significantly reduced due to the negative step size influence on the hydraulic jump. Furthermore, the effectiveness of the computational fluid dynamics (CFD) techniques to simulate stilling basin flows and to adequately characterize the hydraulic jump performance was confirmedThe work was supported by the research project: 'La aireacion del flujo y su implementacion en prototipo para la mejora de la disipacion de energia de la lamina vertiente por resalto hidraulico en distintos tipos de presas' (BIA2017-85412-C2-1-R), funded by the Spanish Agencia Estatal de Investigacion and FEDER.Macián-Pérez, JF.; García-Bartual, R.; López Jiménez, PA.; Vallés-Morán, FJ. (2023). Numerical modeling of hydraulic jumps at negative steps to improve energy dissipation in stilling basins. Applied Water Science. 13(10). https://doi.org/10.1007/s13201-023-01985-4131
    corecore