7 research outputs found

    Research on an antibacterial system based on halloysite nanotubes for biomedical applications

    No full text
    Zastosowanie układów stanowiących nośniki leków staje się w ostatnich latach coraz bardziej popularne. Wykorzystanie tego typu struktur polega na wprowadzeniu do ich wnętrza lub adsorpcji na ich powierzchni, związków o działaniu terapeutycznym. Jednym z takich nośników są nanorurki haloizytu, które dzięki swojej budowie rurkowo-warstwowej, biozgodności oraz niskiej cytotoksyczności świetnie nadają się do transportu substancji aktywnych. W niniejszej pracy zaprojektowano oraz zbadano dwa układy nanorurek haloizytu z wprowadzonym do ich światła antybiotykiem – fosforanem klindamycyny. Nanorurki poddano modyfikacji kwasem, w celu zwiększenia średnicy wewnętrznej, a uzyskany efekt zbadano przy pomocy techniki SEM oraz TEM. Antybiotyk został wprowadzony zarówno do nanorurek niemodyfikowanych, jak i modyfikowanych, o poszerzonym wnętrzu. Z pomocą techniki HPLC wyznaczono efektywność załadowania obu typów nanorurek oraz charakterystyczne dla nich profile uwalniania leku. Ze względu na dalsze plany związane z badanym układem, a mianowicie wprowadzenie nanorurek haloizytu z antybiotykiem do matrycy hydrożelowej, przeprowadzono wstępne próby ujednolicenia rozmiarów tych struktur, co może mieć istotne znaczenie dla późniejszego jednorodnego rozproszenia nanorurek w hydrożelu.Wyniki otrzymanych badań potwierdzają duży potencjał nanorurek haloizytu jako nośników fosforanu klindamycyny. Przeprowadzone badania wykazały, że modyfikacja nanorurek kwasem nie wpływa niekorzystnie na ich strukturę i zdolność do adsorpcji leku. Stwierdzono również, że antybiotyk uwalnia się z nanorurek w sposób kontrolowany. Zatem jak zakładano, dzięki użyciu nanorurek jako nośnika, lek byłby uwalniany w organizmie stopniowo, zwiększając dzięki temu swój efekt terapeutyczny. Wykazano również, że oba typy nanorurek zawierających fosforan klindamycyny wykazują właściwości antybakteryjne.Application of the systems functioning as drug carriers has become increasingly popular in recent years. Compounds with therapeutic effects can be either entrapped inside such systems, or they can be adsorbed on their surface. Halloysite nanotubes constitute one of such carrier systems. Due to their layered tubular structure, biocompatibility and low cytotoxicity halloysite nanotubes are well suited for transporting active substances. In this work an antibiotic (clindamycin phosphate) was entrapped in the lumen of the halloysite nanotubes and the obtained delivery system was characterized. The nanotubes were subjected to acid modification to increase their lumen. The effect was then verified using SEM and TEM techniques. Antibiotic was loaded into both unmodified and acid modified nanotubes with broader lumen. The drug loading and release profiles were measured for both types of nanotubes using HPLC technique. As future plans include the insertion of antibiotic-loaded halloysite nanotubes into the hydrogel matrix, preliminary homogenization tests of these structures were carried out. The unification of their sizes may prove important when nanotubes will be dispersed in the hydrogel.The obtained results confirm the potential of halloysite nanotubes as drug carriers. Studies have shown that the modification of nanotubes using acid does not adversely affect their structure, or ability to adsorb the drug. It has also been found that the drug was released from halloysite in a controlled manner. Thus, as assumed, by using nanotubes as the carrier, the drug would be released gradually, thereby increasing its therapeutic effect. It was shown that both types of nanotubes loaded with clindamycin phosphate exhibit antibacterial activity

    Investigation of the influence of selected oxide nanoparticles on the production of functional multilayer polyelectrolyte films

    No full text
    Nanotechnologia jest nauką wykazującą nieograniczone wręcz możliwości, dzięki którym jest wykorzystywana w coraz większej ilości dziedzin życia. Znalazła zastosowanie m.in. w katalizie, w powłokach antybakteryjnych, implantach czy w ukierunkowanym dostarczaniu leków. W pracy opisano tworzenie i właściwości filmów nanokompozytowych otrzymanych za pomocą metody LbL – warstwa po warstwie, która polega na sekwencyjnej adsorpcji przeciwnie naładowanych nanoobiektów. Wybrane substraty do tworzenia filmów to: polielektrolity, biopolimer – fucoidan oraz nanocząstki SiO2. Wytworzenie warstw PEM zakończonych biopolimerem lub nonocząstkami SiO2, pozwala na zbadanie możliwości modyfikacji powierzchni wybranymi funkcjonalnymi makromolekułami oraz ich wpływ na hydrofobowość otrzymanych systemów.Nanotechnology is a science with unlimited possibilities with constantly growing range of applications. It can be utilized in catalysis, antibacterial coatings, implants or in the targeted drugs delivery. The work describes the fabrication and properties of nanocomposite films obtained by sequential adsorption of selected nanoobjects - the LbL method - layer by layer. They were polyelectrolytes, biopolymer – fucoidan and SiO2 nanoparticles. The formation of PEM films terminated with a biopolymer or SiO2 nanoparticles allows checking the surface modification with selected functional macromolecules and properties of such nanocomposites as their hydrophobicity of the studied systems

    Halloysite-based system for controlled delivery of clindamycin phosphate

    No full text

    Application of Halloysite Nanotubes in Cancer Therapy—A Review

    No full text
    Halloysite, a nanoclay characterized by a unique, tubular structure, with oppositely charged interior and exterior, suitable, nanometric-range size, high biocompatibility, and low cost, is recently gaining more and more interest as an important and versatile component of various biomaterials and delivery systems of biomedical relevance. One of the most recent, significant, and intensely studied fields in which halloysite nanotubes (HNTs) found diverse applications is cancer therapy. Even though this particular direction is mentioned in several more general reviews, it has never so far been discussed in detail. In our review, we offer an extended survey of the literature on that particular aspect of the biomedical application of HNTs. While historical perspective is also given, our paper is focused on the most recent developments in this field, including controlled delivery and release of anticancer agents and nucleic acids by HNT-based systems, targeting cancer cells using HNT as a carrier, and the capture and analysis of circulating tumor cells (CTCs) with nanostructured or magnetic HNT surfaces. The overview of the most up-to-date knowledge on the HNT interactions with cancer cells is also given

    Magnetic nanoparticles for cancer cells capture

    No full text

    Clindamycin-Loaded Halloysite Nanotubes as the Antibacterial Component of Composite Hydrogel for Bone Repair

    Get PDF
    A new drug delivery system consisting of clindamycin phosphate entrapped in acid-etched halloysite nanotubes was successfully prepared and characterized. It was then used as an antibacterial component of the multicomponent hydrogel designed as a material for bone regeneration. First, halloysite (HNT) was etched and clindamycin phosphate (CP) was entrapped in both raw and modified nanotubes, resulting in HNT-CP and EHNT-CP systems. They were characterized using SEM, TEM, TGA and FTIR; the entrapment efficiency and release of CP from both systems were also studied. EHNT-CP was then used as an antibacterial component of the two hydrogels composed of alginate, collagen and β-TCP. The hydrogels were prepared using different crosslinking procedures but had the same composition. The morphology, porosity, degradation rate, CP release profile, cytocompatibility, antibacterial activity and ability to induce biomineralization were studied for both materials. The hydrogel obtained by a chemical crosslinking with EDC followed by the physical crosslinking with calcium ions had better properties and was shown to have potential as a bone repair material
    corecore