92 research outputs found

    3-D printed rectangular waveguide 123-129 GHz packaging for commercial CMOS RFICs

    Get PDF
    This work demonstrates the hybrid integration of a complementary metal–oxide–semiconductor (CMOS) radio frequency integrated circuit (RFIC) into a host 3-D printed metal-pipe rectangular waveguide (MPRWG). On-chip Vivaldi antennas are used for TE 10 -to-thin-film microstrip (TFMS) mode conversion. Our packaging solution has a combined measured insertion loss of only 1 dB/transition at 126 GHz. This unique packaging and interconnect solution opens up new opportunities for implementing low-cost subterahertz (THz) multichip modules

    NEWS: Nuclear emulsion WIMP search

    Get PDF
    The most convincing candidate as main constituent of the dark matter in the Universe consists of Weakly Interacting Massive Particles (WIMPs). WIMPs must be electrically neutral and interact with a very low cross-section (σ < 10 −40 cm2) which makes them detectable in direct searches only through the observation of nuclear recoils induced by the WIMP rare scatterings. In the experiments carried out so far, recoiled nuclei are searched for as a signal over a background produced by Compton electrons and neutron scatterings. Signal found by some experiments have not been confirmed by other techniques. We propose an R&D program for a new experimental method able to observe the track of the scattered nucleus based on new developments in the nuclear emulsion technique. Nuclear emulsions would act both as the WIMP target and as the tracking detector able to reconstruct the direction of the recoiled nucleus. This unique characteristic would provide a new and unambiguous signature of the presence of the dark matter in our galaxy

    Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches

    Get PDF
    Recent developments of the nuclear emulsion technology led to the production of films with nanometric silver halide grains suitable to track low energy nuclear recoils with submicrometric length. This improvement opens the way to a directional Dark Matter detection, thus providing an innovative and complementary approach to the on-going WIMP searches. An important background source for these searches is represented by neutron-induced nuclear recoils that can mimic the WIMP signal. In this paper we provide an estimation of the contribution to this background from the intrinsic radioactive contamination of nuclear emulsions. We also report the neutron-induced background as a function of the read-out threshold, by using a GEANT4 simulation of the nuclear emulsion, showing that it amounts to about 0.06 per year per kilogram, fully compatible with the design of a 10 kg × year exposure

    Meta-Review of Metanalytic Studies with Repetitive Transcranial Magnetic Stimulation (rTMS) for the Treatment of Major Depression

    Get PDF
    BACKGROUND: Major Depression (MD) and treatment-resistant depression (TRD) are worldwide leading causes of disability and therapeutic strategies for these impairing and prevalent conditions include pharmacological augmentation strategies and brain stimulation techniques. In this perspective, repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique with a favorable profile of tolerability which, despite being recently approved by the Food and Drug Administration (FDA) for the treatment of patients with medication-refractory unipolar depression, still raises some doubts about most effective parameters of stimulation.METHODS: A literature search was performed using PubMed for the years 2001 through February 2011 in order to review meta-analytic studies assessing efficacy and safety issues for rTMS in depressive disorders. Fifteen meta-analyses were identified and critically discussed in order to provide an updated and comprehensive overview of the topic with specific emphasis on potentially optimal parameters of stimulation.RESULTS: First meta-analyses on the efficacy of rTMS for the treatment of MD and TRD have shown mixed results. On the other hand, more recent meta-analytic studies seem to support the antidepressant efficacy of the technique to a greater extent, also in light of longer periods of stimulation (e.g. > 2 weeks).CONCLUSION: rTMS seems to be an effective and safe brain stimulation technique for the treatment of medication refractory depression. Nevertheless, further studies are needed to better define specific stimulation-related issues, such as duration of treatment as well as durability of effects and predictors of response
    • 

    corecore