268 research outputs found

    Hole Doping Effects on Spin-gapped Na2Cu2TeO6 via Topochemical Na Deficiency

    Full text link
    We report the magnetic susceptibility and NMR studies of a spin-gapped layered compound Na2Cu2TeO6 (the spin gap Δ\Delta\sim 250 K), the hole doping effect on the Cu2TeO6 plane via a topochemical Na deficiency by soft chemical treatment, and the static spin vacancy effect by nonmagnetic impurity Zn substitution for Cu. A finite Knight shift at the 125^{125}Te site was observed for pure Na2Cu2TeO6. The negative hyperfine coupling constant 125Atr^{125}A_{tr} is an evidence for the existence of a superexchange pathway of the Cu-O-Te-O-Cu bond. It turned out that both the Na deficiency and Zn impurities induce a Curie-type magnetism in the uniform spin susceptibility in an external magnetic field of 1 T, but only the Zn impurities enhance the low-temperature 23^{23}Na nuclear spin-lattice relaxation rate whereas the Na deficiency suppresses it. A spin glass behavior was observed for the Na-deficient samples but not for the Zn-substituted samples. The dynamics of the unpaired moments of the doped holes are different from that of the spin vacancy in the spin-gapped Cu2TeO6 planes.Comment: 4 pages, 7 figures, to be published in J. Phys. Soc. Jpn. Vol. 75, No. 8 (2006

    Spectral Distribution of Cu Nuclear Spin-Lattice Relaxation Time in Superconducting Bi_2Sr_2CaCu_2O_8_+ _6

    Get PDF
    We successfully observed the frequency distribution of Cu nuclear spin-lattice relaxation time in the superconducting state of single crystals Bi2212, which we believe corresponds to a theoretical suggestion from the analysis of the energy gap distribution in STM/STS (Mori et al., Phys. Rev. Lett. 101 (2008) 247003).Comment: 2 pages, 2 figures; to appear in J. Phys. Soc. Jpn. Vol. 82, No. 9 (2013

    The p38α MAPK Regulates Microglial Responsiveness to Diffuse Traumatic Brain Injury

    Get PDF
    Neuropathology after traumatic brain injury (TBI) is the result of both the immediate impact injury and secondary injury mechanisms. Unresolved post-traumatic glial activation is a secondary injury mechanism that contributes to a chronic state of neuroinflammation in both animal models of TBI and human head injury patients. We recently demonstrated, using in vitro models, that p38α MAPK signaling in microglia is a key event in promoting cytokine production in response to diverse disease-relevant stressors and subsequent inflammatory neuronal dysfunction. From these findings, we hypothesized that the p38α signaling pathway in microglia could be contributing to the secondary neuropathologic sequelae after a diffuse TBI. Mice where microglia were p38α-deficient (p38α KO) were protected against TBI-induced motor deficits and synaptic protein loss. In wild-type (WT) mice, diffuse TBI produced microglia morphological activation that lasted for at least 7 d; however, p38α KO mice failed to activate this response. Unexpectedly, we found that the peak of the early, acute phase cytokine and chemokine levels was increased in injured p38α KO mice compared with injured WT mice. The increased cytokine levels in the p38α KO mice could not be accounted for by more infiltration of macrophages or neutrophils, or increased astrogliosis. By 7 d after injury, the cytokine and chemokine levels remained elevated in injured WT mice but not in p38α KO mice. Together, these data suggest that p38α balances the inflammatory response by acutely attenuating the early proinflammatory cytokine surge while perpetuating the chronic microglia activation after TBI

    On the Critical Behavior of the Uniform Susceptibility of a Fermi Liquid Near an Antiferromagnetic Transition with Dynamic Exponent z=2 z = 2

    Full text link
    We compute the leading behavior of the uniform magnetic susceptibility, χ\chi, of a Fermi liquid near an antiferromagnetic transition with dynamic exponent z=2z=2. Our calculation clarifies the role of triangular ``anomaly'' graphs in the theory and justifies the effective action used in previous work \cite{Hertz}. We find that at the z=2z=2 critical point of a two dimensional material, limq0χ(q,0)=χ0DTlim_{q \rightarrow 0} \chi (q,0) = \chi_0 - D T with χ0\chi_0 and DD nonuniversal constants. For reasonable band structures we find that in a weak coupling approximation DD is small and positive. Our result suggests that the behavior observed in the quantum critical regime of underdoped high-TcT_c superconductors are difficult to explain in a z=2z=2 theory.Comment: 12 pages, uuencoded Postscript fil

    Quantum Disordered Regime and Spin Gap in the Cuprate Superconductors

    Full text link
    We discuss the crossover from the quantum critical, z ⁣= ⁣1z\!=\!1, to the quantum disordered regime in high-Tc_c materials in relation to the experimental data on the nuclear relaxation, bulk susceptibility, and inelastic neutron scattering. In our scenario, the spin excitations develop a gap Δ ⁣ ⁣1/ξ\Delta\!\sim\!1/\xi well above Tc_c, which is supplemented by the quasiparticle gap below Tc_c. The above experiments yield consistent estimates for the value of the spin gap, which increases as the correlation length decreases.Comment: 14 pages, REVTeX v3.0, PostScript file for 3 figures is attached, UIUC-P-93-07-06

    Spin Gaps and Bilayer Coupling in YBa2_2Cu3_3O7δ_{7-\delta} and YBa2_2Cu4_4O8_8

    Full text link
    We investigate the relevance to the physics of underdoped YBa2_2Cu3_3O6+x_{\rm 6+x} and YBa2_2Cu4_4O8_8 of the quantum critical point which occurs in a model of two antiferromagnetically coupled planes of antiferromagnetically correlated spins. We use a Schwinger boson mean field theory and a scaling analysis to obtain the phase diagram of the model and the temperature and frequency dependence of various susceptibilities and relaxation rates. We distinguish between a low ω,T\omega ,T coupled-planes regime in which the optic spin excitations are frozen out and a high ω,T\omega ,T decoupled-planes regime in which the two planes fluctuate independently. In the coupled-planes regime the yttrium nuclear relaxation rate at low temperatures is larger relative to the copper and oxygen rates than would be naively expected in a model of uncorrelated planes. Available data suggest that in YBa2_2Cu4_4O8_8 the crossover from the coupled to the decoupled planes regime occurs at T700KT 700K or T200KT \sim 200K. The predicted correlation length is of order 6 lattice constants at T=200KT=200K. Experimental data related to the antiferromagnetic susceptibility of YBa2_2Cu4_4O8_8 may be made consistent with the theory, but available data for the uniform susceptibility are inconsistent with the theory.Comment: RevTex 3.

    Micrometastasis Detection Guidance by Whole-Slide Image Texture Analysis in Colorectal Lymph Nodes

    Get PDF
    Introduction/ Background Cancer is a disease that affects millions worldwide and accurate determination of whether lymph nodes (LNs) near the primary tumor contain metastatic foci is of critical importance for proper patient management. Histopathological evaluation is the only accepted method to make that determination. However, the current standard of care only examines a single central histological section per LN and yields an unacceptable false-negative rate. Aims To help pathologists in their examination we propose a method that extracts textural features from histopathological LN whole slide images (WSI) and then applies support vector machines (SVMs) to automatically identify regions suspicious for metastatic foci. Methods The database consisted of WSI from 44 LNs. Sections were stained with hematoxylin-eosin and examined at 20x (0.45μm resolution). Twenty-eight of the LNs were identified by an expert pathologist as positive for cancer (P), and the remaining sixteen were negative (N). This database was divided into two groups. Group 1 (15P and 5N) was used for training and Group 2 (13P and 11N) was used for testing the classification technique. For all analysis each WSI was divided into non-overlapping 1000 x 1000 pixel sub-images that will be referred to as high-power fields (HPFs). For each LN in Group 1, at least one WSI was annotated by a pathologist to identify rectangular, HPF-scale regions as locally cancerous or locally non-cancerous. From these annotated slides, 924 HPFs (462 P and 462 N) were obtained. For each of these HPFs, statistical features based on gray-level co-occurrence matrices [1] and Law’s texture energy measures [2, 3] were extracted from 9 derived images [4]. The extracted features were submitted to a sequential forward selection (SFS) method [5] to select few non-redundant features providing best class separation (cancerous vs. non-cancerous region). Combinations of the selected features were tested on the 924 HPFs using k-fold cross-validation to find those that produced the best results and consequently to train our SVM-based classifier. In Group 2, WSI were not annotated for cancerous and non-cancerous zones on a HPF scale. Each LN, however, had been labeled by a pathologist as positive or negative for cancer. For each WSI, each section was divided into contiguous HPFs, and those which mainly contain fatty tissue, background, and tears were automatically excluded. Each selected HPFs was classified as cancerous or non-cancerous using the previously trained classifier to obtain the total number of cancer-classified per LN. A receiver operating characteristics (ROC) curve was traced by changing the discriminator threshold (T) used to label the LN as P for cancer as a function of the total number of cancer-classified HPFs. Results During training, 5 Laws features were selected by SFS. Highly satisfactory k-fold cross-validation with a F-score of 0.996 ± 0.005 was obtained using only 2 statistical features computed at different scales. The ROC curve obtained by applying the SVM-classifier to the test set is shown in the next figure. Two valuable operating points can be identified which both guaranteed no false-negative. At T=11 we got 2 false-positives and an optimal F-score of 0.917, and with a more conservative approach, T=1, we got 7 false-positives and a F-score of 0.759. The top-left part of the slide displayed in next figure would have been proposed to the pathologist as the most suspicious region of the cancerous LN

    Cu Nuclear Quadrupole Resonance Study of the Spin-Peierls Compound Cu1-xMgxGeO3: A Possibility of Precursory Dimerization

    Full text link
    We report on a zero-field 63Cu nuclear quadrupole resonance (NQR) study of nonmagnetic Mg impurity substituted Cu1-xMgxGeO3 (single crystals; the spin-Peierls transition temperature Tsp~14, 13.5, and 11 K for x=0, 0.0043, and 0.020) in a temperature range from 4.2 K to 250 K. We found that below T*~77 K, Cu NQR spectra are broadened and nonexponential Cu nuclear spin-lattice relaxation increases for undoped and more remarkably for Mg-doped samples. The results indicate that random lattice distortion and impurity-induced spins appear below T*, which we associate with a precursor of the spin-Peierls transition. Conventional magnetic critical slowing down does not appear down to 4.2 K below Tsp.Comment: 4 pages, 4 figure

    Spin Gaps in High Temperature Superconductors

    Full text link
    The phenomenology and theory of spin gap effects in high temperature superconductors is summarized. It is argued that the spin gap behavior can only be explained by a model of charge 0 spin 1/2 fermions which become paired into singlets and that there are both theoretical and experimental reasons for believing that the pairing is greatly enhanced in the bilayer structure of the YBa2Cu3O6+xYBa_2Cu_3O_{6+x} system. This article will appear in the Proceedings of the Stanford Conference on Spectroscopies in Novel Superconductors. To obtain postscript files containing the figures send mail to [email protected]: 9 pages, revtex. To obtain figures contact [email protected]

    Epidemiological approach to nosocomial infection surveillance data: the Japanese Nosocomial Infection Surveillance System

    Get PDF
    Surveillance of nosocomial infection is the foundation of infection control. Nosocomial infection surveillance data ought to be summarized, reported, and fed back to health care personnel for corrective action. Using the Japanese Nosocomial Infection Surveillance (JANIS) data, we determined the incidence of nosocomial infections in intensive care units (ICUs) of Japanese hospitals and assessed the impact of nosocomial infections on mortality and length of stay. We also elucidated individual and environmental factors associated with nosocomial infections, examined the benchmarking of infection rates and developed a practical tool for comparing infection rates with case-mix adjustment. The studies carried out to date using the JANIS data have provided valuable information on the epidemiology of nosocomial infections in Japanese ICUs, and this information will contribute to the development of evidence-based infection control programs for Japanese ICUs. We conclude that current surveillance systems provide an inadequate feedback of nosocomial infection surveillance data and, based on our results, suggest a methodology for assessing nosocomial infection surveillance data that will allow infection control professionals to maintain their surveillance systems in good working order
    corecore