20 research outputs found

    Mobilization of human hematopoietic stem/progenitor-enriched CD34+ cells into peripheral blood during stress related to ischemic stroke.

    Get PDF
    The bone marrow-derived stem/progenitor cells were demonstrated to play an important role in a regeneration of damaged tissue. Based on these observations we asked whether the stroke-related stress triggers mobilization of stem/progenitor cells from the bone marrow into the peripheral blood, which subsequently could contribute to regeneration of damaged organs. To address this issue, the peripheral blood samples were harvested from patients with ischemic stroke during the first 24 hrs as well as after the 48 (2nd day) and 144 hrs (6th day) since the manifestation of symptoms. In these patients we evaluated the percentage of hematopoietic stem/progenitor-enriched CD34+ cells by employing flow cytometry and the number of hematopoietic progenitor cells for the granulocyto-monocytic (CFU-GM) and erythroid (BFU-E)-lineages circulating in peripheral blood. We concluded that stress related to ischemic stroke triggers the mobilization of hematopoietic stem/progenitor cells from the bone marrow into peripheral blood. These circulating stem/progenitor cells may play an important role in the process of regeneration of the ischemic tissue

    An optimization of hematopoietic stem and progenitor cell isolation for scientific and clinical purposes by the application of a new parameter determining the hematopoietic graft efficacy.

    Get PDF
    The transplantation of hematopoietic stem and progenitor cells (HSPC) is an established lifesaving therapy. Bone marrow (BM), harvested from heparinized cadaveric organ donors, peripheral blood (PB) and cord blood (CB), are important sources of hematopoietic stem cells. HSPCs, which are used for transplantation purposes, are routinely evaluated in terms of number of mononuclear cells (MNCs), CD34+ MNCs count and viability. The efficacy of grafting is determined additionally in clonogenic tests in vitro. These tests deliver important information about the number of HSPCs and their proliferative potential. Unfortunately, they do not give a possibility to evaluate the functional HSPC chemotactic reactivity in the SDF-1 gradient, which is probably the key phenomenon for HSPC homing after transplantation procedure. Thus, the aim of our study was to optimize HSPC isolation according to their chemotactic reactivity in SDF-1 gradient. Using multiparameter cell sorter (FACS Aria, BD) we examined the HSPCs attracted by SDF-1 on a single cell level. The population of cells which participated in the chemotactic process was highly enriched in CXCR4+lin-AC133+CD45+ cells (referred as hematopoietic stem cells) and to our surprise in CXCR4+lin-AC133+CD45- cells (referred as pluripotent stem cells) in quantitative amounts. Since reactivity of HSPCs may depend on various factors involved in the protocol of their isolation and short-term storage, we tested the most commonly used anticoagulants (ACD, CPDA-1, EDTA and Heparin) and culture media (DME, IMDM, RPMI). HSPCs, harvested from CB, PB and BM, were subsequently investigated for clonogenic growth of CFU-GM in methylcellulose cultures and for the level of apoptosis by employing annexin V staining. Evaluating clonogenic potential, ability of chemotactic reactivity in SDF-1 gradient and intensification of apoptosis of HSPC as the most safe anticoagulant and medium were selected. This study has proved that chemotactic reactivity of HSPCs is a new but very important parameter which should be included in the procedure of their isolation

    The Effect of stem cell mobilisation with granulocyte colony-stimulating factor on the morphology of the haematopoietic organs in mice

    Get PDF
    The cellular mobilisation of mice with granulocyte colony-stimulating factor (G-CSF) results in an egress of haematopoietic stem/progenitor cells from the bone marrow and an increase in their level in the peripheral blood. While the mobilisation process with different agents is widely studied, little is known about the morphology of the murine haematopoietic organs during the mobilisation. The purpose of this study was to examine the morphology of the bone marrow, spleen and liver in mice mobilised with G-CSF. To address this issue mice were injected subcutaneously with G-CSF for 6 consecutive days. Morphological analysis revealed an increase in the number of mature neutrophils close to the wall of sinusoids in the bone marrow as well as hypertrophy of the red pulp in the spleen. At the same time no morphological changes were noticed in the livers of G-CSF-mobilised mice. In conclusion, G-CSF induces discrete ultrastructural changes in the bone marrow, which intensify the transendothelial traverse of haematopoietic stem and progenitor cells from it. The changes in the spleen are related to repopulation of this organ by mobilised early haematopoietic cells circulating in the peripheral blood. We also noticed that the process of migration of haematopoietic cells from the bone marrow into the peripheral blood began on day 2 and was most pronounced on day 4 after stimulation with G-CSF

    An optimization of protocol for mixed chimerism induction in mice model.

    Get PDF
    Studies on mixed chimerism are currently focused primarily on obtaining less toxic conditioning protocols. With these issues in mind, we have undertaken the attempt to optimize the procedure of mixed chimerism induction in mice. In order to reduce toxicity, we used decreasing doses of total body irradiation (TBI) together with combination of blocking antibodies. We also tried to eliminate immunosuppression (cyclophosphamide - CP) treatment after bone marrow transplantation. B6.SJL-PtprcaPep3b mice were injected with 20-30 x 106 bone marrow cells from Balb C mice. Mice were treated with TBI (3 - 1.5 - 0 Gy) on "-1" day of the experiment and blocking antibodies against CD40L ("0", and "4" days) and additionally anti-CD8 ("-2" day) and/or anti-NK1.1 ("-3" day). Mice in certain groups also received CP (175 mg/kg) on "2" day. Presence of mixed chimerism was assessed in peripheral blood cells by flow cytometry on the 1st, 2nd, 3rd, 4th, 6th and 8th weeks of the experiment by detecting of CD45.1 (characteristic for B6.SJL-PtprcaPep3b strain) and CD45.2 (characteristic for Balb C strain) antigens expression. We also analyzed the percentage of peripheral blood CD8 T-cells (CD3e/CD8a) and NK cells (Ly-49D/NK1.1). We found that reduction of TBI dose and elimination of CP decrease the rate of mixed chimerism formation. The highest percentage of donor cells was obtained in the group of animals treated with 3 Gy of TBI, CP and combination of anti-CD40L, anti-CD8, and anti-NK1.1 antibodies. The 3 Gy TBI was necessary to induce stable mixed chimerism, but it could be obtained without the CP use. The percentage of CD3e/CD8a and Ly-49D/NK1.1 cells was significantly lower in the groups of mice treated by corresponding antibodies. Moreover, we observed the lowest number of peripheral blood Ly-49D/NK1.1 cells in the group of animals with highest mixed chimerism. Our experiments in mice model can help in better understanding of mixed chimerism phenomenon and in selecting the method of mixed chimerism induction with lowest possible toxicity. This also might improve the protocols of stable mixed chimerism induction in humans, and in the future, the effectiveness of vascularized organ transplantation

    Mobilization of human hematopoietic stem/progenitor-enriched CD34+ cells into peripheral blood during stress related to ischemic stroke.

    Get PDF
    The bone marrow-derived stem/progenitor cells were demonstrated to play an important role in a regeneration of damaged tissue. Based on these observations we asked whether the stroke-related stress triggers mobilization of stem/progenitor cells from the bone marrow into the peripheral blood, which subsequently could contribute to regeneration of damaged organs. To address this issue, the peripheral blood samples were harvested from patients with ischemic stroke during the first 24 hrs as well as after the 48 (2nd day) and 144 hrs (6th day) since the manifestation of symptoms. In these patients we evaluated the percentage of hematopoietic stem/progenitor-enriched CD34+ cells by employing flow cytometry and the number of hematopoietic progenitor cells for the granulocyto-monocytic (CFU-GM) and erythroid (BFU-E)-lineages circulating in peripheral blood. We concluded that stress related to ischemic stroke triggers the mobilization of hematopoietic stem/progenitor cells from the bone marrow into peripheral blood. These circulating stem/progenitor cells may play an important role in the process of regeneration of the ischemic tissue

    Evaluation of biologically active substances promoting the development of or protecting against endometrial cancer

    No full text
    Aneta Cymbaluk-PƂoska,1 Anita Chudecka-GƂaz,1 Anna JagodziƄska,1 Ewa Pius-Sadowska,2 Agnieszka Sompolska-RzechuƂa,3 BogusƂaw MachaliƄski,2 Janusz Menkiszak1 1Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland; 2General Pathology Department, Pomeranian Medical University, Szczecin, Poland; 3Department of Statistics, West Pomeranian University of Technology, Szczecin, Poland Introduction: Adipose tissue is considered an endocrine organ and produces a number of biologically active substances. Aims: To consider the role that four adipokines – leptin, omentin-1, vaspin, and galectin-3 – play in the diagnosis of endometrium cancer and to investigate the association between serum concentrations of adipose tissue metabolism products and the diagnostics and prognosis in endometrial cancer. Patients and methods: The study included 168 patients with body mass index (BMI) >20 kg/m2 admitted due to post-menopausal bleeding. Results: A receiver operating characteristic curves test was performed to determine the diagnostic values of the proteins tested. For leptin and galectin-3 the area under the curve (AUC) values were 0.79/0.68, while for vaspin and omentin-1 the AUC values were 0.82/0.86 for all study patients. The final model identified the following independent risk factors: glucose concentration, BMI, waist circumference, leptin, and vaspin concentrations. Diagnostic values of leptin and galectin-3 with regard to differentiation between high (Fédération Internationale de Gynécologie Obstétrique [FIGO] III and IV) and low (FIGO I and II) stages of clinical tumor advancement and prediction of tumor grading (G1 vs G3) based on the AUC curve were 0.82/0.70 and 0.80/0.74. The AUC values for vaspin and omentin-1 with respect to differentiation between histopathological advancement and grading were 0.86/0.81 and 0.83/0.77, respectively. Significantly lower values of mean omentin-1 and vaspin concentrations were also demonstrated in cases of lymphatic vessel invasion, lymph node metastases, or deep endometrial infiltration (p=0.002, p=0.01, p=0.003, respectively). Conclusion: It appears that elevated concentrations of leptin, vaspin, and omentin-1 may indicate the presence of endometrial cancer. Furthermore, leptin serum level and vaspin appear to be useful tools in the assessment of clinical staging of endometrial cancer. Keywords: endometrial cancer, adipokines, leptin, vaspin, galectin-3, omentin-

    Correlation of CD34+ Cells with Tissue Angiogenesis after Traumatic Brain Injury in a Rat Model

    No full text
    Increasing evidence suggests that circulating endothelial progenitor cells, which are a subpopulation of hematopoietic progenitor CD34+ cells, play a critical role in neovascularization and tissue repair. We have tested the hypothesis that traumatic brain injury (TBI) could mobilize CD34+ cells to peripheral blood and brain tissue, a process critical for vascular repair, in a rat model of TBI. Male Wistar rats were subjected to controlled fluid percussion. Blood and brain tissue were collected before and after TBI to measure the levels of CD34+ cells in peripheral blood and to detect their accumulation in the damaged cerebral tissue. Compared with surgery controls, CD34+ cells significantly increased in the peripheral blood and accumulated in the brain tissue of TBI rats. Immunohistochemistry detected new vessels with incomplete CD34+ endothelial-like cell lining and an increased number of microvessels in the injured and surrounding tissue. The results demonstrate a close correlation between an increase in circulating CD34+ cells in response to traumatic injury and angiogenesis in TBI rat brain. They also suggest that transplantation of CD34+ cells or augmentation of endogenous CD34+ cells may be a novel therapeutic approach for patients with TBI
    corecore