82 research outputs found

    Human T Cell and Antibody-Mediated Responses to the Mycobacterium tuberculosis Recombinant 85A, 85B, and ESAT-6 Antigens

    Get PDF
    Tuberculosis remains a major health problem throughout the world causing large number of deaths. Effective disease control and eradication programs require the identification of major antigens recognized by the protective responses against M. tuberculosis. In this study, we have investigated humoral and cellular immune responses to M. tuberculosis-specific Ag85A, Ag85B, and ESAT-6 antigens in Brazilian patients with pulmonary (P, n = 13) or extrapulmonary (EP, n = 12) tuberculosis, patients undergoing chemotherapy (PT, n = 23), and noninfected healthy individuals (NI, n = 7). Compared to NI, we observed increased levels of IgG1 responses to Ag85B and ESAT-6 in P and PT groups. Regarding cellular immunity, Ag85A and ESAT-6 were able to discriminate P, PT, and EP patients from healthy individuals by IFN-γ production and P and PT groups from EP individuals by production of TNF-α. In summary, these findings demonstrate the ability of Ag85A, Ag85B, and ESAT-6 to differentiate TB patients from controls by IgG1, IFN-γ and TNF-α production

    Host Susceptibility to Brucella abortus Infection Is More Pronounced in IFN-γ knockout than IL-12/β2-Microglobulin Double-Deficient Mice

    Get PDF
    Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. IFN-γ, IL-12, and CD8+ T lymphocytes are important components of host immune responses against B. abortus. Herein, IFN-γ and IL-12/β2-microglobulin (β2-m) knockout mice were used to determine whether CD8+ T cells and IL-12-dependent IFN-γ deficiency would be more critical to control B. abortus infection compared to the lack of endogenous IFN-γ. At 1 week after infection, IFN-γ KO and IL-12/β2-m KO mice showed increased numbers of bacterial load in spleens; however, at 3 weeks postinfection (p.i.), only IFN-γ KO succumbed to Brucella. All IFN-γ KO had died at 16 days p.i. whereas death within the IL-12/β2-m KO group was delayed and occurred at 32 days until 47 days postinfection. Susceptibility of IL-12/β2-m KO animals to Brucella was associated to undetectable levels of IFN-γ in mouse splenocytes and inability of these cells to lyse Brucella-infected macrophages. However, the lack of endogenous IFN-γ was found to be more important to control brucellosis than CD8+ T cells and IL-12-dependent IFN-γ deficiencies

    Schistosoma mansoni Tegument Protein Sm29 Is Able to Induce a Th1-Type of Immune Response and Protection against Parasite Infection

    Get PDF
    Schistosomiasis is the most important human helminth infection in terms of morbidity and mortality. Although the efforts to develop a vaccine against this disease have experienced failures, a new generation of surface antigens revealed by proteomic studies changed this scenario. Our group has characterized the protein Sm29 described previously as one of the most exposed and expressed antigens in the outer tegument of Schistosoma mansoni. Studies in patients living in endemic areas for schistosomiasis revealed high levels of IgG1 and IgG3 anti-Sm29 in resistant individuals. In this study, confocal microscope analysis showed Sm29 present in the surface of lung-stage schistosoluma and adult worms. Recombinant Sm29, when used as vaccine candidate, induced high levels of protection in mice. This protection was associated with a typical Th1 immune response and reduction of worm burden, liver granulomas and in intestinal eggs. Further, microarray analysis of worms recovered from vaccinated mice showed significant down-regulation of several genes encoding previously characterized vaccine candidates and/or molecules exposed on the surface, suggesting an immune evasion strategy of schistosomes under immune attack. These results demonstrated that Sm29 as one of the important antigens with potential to compose a vaccine against schistosomiasis

    Brazilian coffee genome project: an EST-based genomic resource

    Full text link
    corecore