27,066 research outputs found

    Generalised Calogero-Moser models and universal Lax pair operators

    Get PDF
    Calogero-Moser models can be generalised for all of the finite reflection groups. These include models based on non-crystallographic root systems, that is the root systems of the finite reflection groups, H_3, H_4, and the dihedral group I_2(m), besides the well-known ones based on crystallographic root systems, namely those associated with Lie algebras. Universal Lax pair operators for all of the generalised Calogero-Moser models and for any choices of the potentials are constructed as linear combinations of the reflection operators. The consistency conditions are reduced to functional equations for the coefficient functions of the reflection operators in the Lax pair. There are only four types of such functional equations corresponding to the two-dimensional sub-root systems, A_2, B_2, G_2, and I_2(m). The root type and the minimal type Lax pairs, derived in our previous papers, are given as the simplest representations. The spectral parameter dependence plays an important role in the Lax pair operators, which bear a strong resemblance to the Dunkl operators, a powerful tool for solving quantum Calogero-Moser models.Comment: 37 pages, LaTeX2e, no macro, no figur

    Numerical Tests of the Chiral Luttinger Liquid Theory for Fractional Hall Edges

    Full text link
    We report on microscopic numerical studies which support the chiral Luttinger liquid theory of the fractional Hall edge proposed by Wen. Our calculations are based in part on newly proposed and accurate many-body trial wavefunctions for the low-energy edge excitations of fractional incompressible states.Comment: 12 pages + 1 figure, Revte

    Quantitative Probe of Pairing Correlations in a Cold Fermionic Atom Gas

    Full text link
    A quantitative measure of the pairing correlations present in a cold gas of fermionic atoms can be obtained by studying the dependence of RF spectra on hyperfine state populations. This proposal follows from a sum rule that relates the total interaction energy of the gas to RF spectrum line positions. We argue that this indicator of pairing correlations provides information comparable to that available from the spin-susceptibility and NMR measurements common in condensed-matter systems.Comment: 5 pages, 1 figur

    Thermally-Assisted Current-Driven Domain Wall Motion

    Full text link
    Starting from the stochastic Landau-Lifschitz-Gilbert equation, we derive Langevin equations that describe the nonzero-temperature dynamics of a rigid domain wall. We derive an expression for the average drift velocity of the domain wall as a function of the applied current, and find qualitative agreement with recent magnetic semiconductor experiments. Our model implies that at any nonzero temperature the average domain-wall velocity initially varies linearly with current, even in the absence of non-adiabatic spin torques.Comment: 4 pages, 2 figure

    Phase Separation of a Fast Rotating Boson-Fermion Mixture in the Lowest-Landau-Level Regime

    Full text link
    By minimizing the coupled mean-field energy functionals, we investigate the ground-state properties of a rotating atomic boson-fermion mixture in a two-dimensional parabolic trap. At high angular frequencies in the mean-field-lowest-Landau-level regime, quantized vortices enter the bosonic condensate, and a finite number of degenerate fermions form the maximum-density-droplet state. As the boson-fermion coupling constant increases, the maximum density droplet develops into a lower-density state associated with the phase separation, revealing characteristics of a Landau-level structure

    A Quantum Theory of Cold Bosonic Atoms in Optical Lattices

    Full text link
    Ultracold atoms in optical lattices undergo a quantum phase transition from a superfluid to a Mott insulator as the lattice potential depth is increased. We describe an approximate theory of interacting bosons in optical lattices which provides a qualitative description of both superfluid and insulator states. The theory is based on a change of variables in which the boson coherent state amplitude is replaced by an effective potential which promotes phase coherence between different number states on each lattice site. It is illustrated here by applying it to uniform and fully frustrated lattice cases, but is simple enough that it can easily be applied to spatially inhomogeneous lattice systems

    Cauchy's residue theorem for a class of real valued functions

    Get PDF
    Let [a,b][a,b] be an interval in R\mathbb{R} and let FF be a real valued function defined at the endpoints of [a,b][a,b] and with a certain number of discontinuities within [a,b][a,b] . Having assumed FF to be differentiable on a set [a,b]\E[a,b] \backslash E to the derivative ff, where EE is a subset of [a,b][a,b] at whose points FF can take values ±∞\pm \infty or not be defined at all, we adopt the convention that FF and ff are equal to 0 at all points of EE and show that KH−vt∫abf=F(b)−F(a)\mathcal{KH-}vt\int_{a}^{b}f=F(b) -F(a)%, where KH−\mathcal{KH-} vtvt denotes the total value of the \textit{% Kurzweil-Henstock} integral. The paper ends with a few examples that illustrate the theory.Comment: 6 page

    Magnons and skyrmions in fractional Hall ferromagnets

    Full text link
    Recent experiments have established a qualitative difference between the magnetization temperature-dependences M(T)M(T) of quantum Hall ferromagnets at integer and fractional filling factors. We explain this difference in terms of the relative energies of collective magnon and particle-hole excitations in the two cases. Analytic calculations for hard-core model systems are used to demonstrate that, in the fractional case, interactions suppress the magnetization at finite temperatures and that particle-hole excitations rather than long-wavelength magnons control M(T)M(T) at low TT.Comment: 4 pages, no figure
    • …
    corecore