2 research outputs found

    Une approche chimio-enzymatique pour étendre l'espace chimique de matière cellulosiques : Application pour une coloration écologique des fibres cellulosiques

    No full text
    L'extension de l'espace moléculaire chimique accessible à partir de la biomasse végétale par des méthodes douces et propres est un sujet d'actualité qui stimule la communauté scientifique afin de développer des produits biosourcés à faible impact environnemental et d'élargir le champ d'exploitation de la biomasse. La fonctionnalisation de la cellulose, le polysaccharide le plus abondant sur la planète, et/ou des cello-oligosaccharides telle que décrite dans cette thèse s'inscrit dans cette démarche. Notre objectif était de développer une méthode chimio-enzymatique impliquant l'action d'une laccase assistée par un médiateur pour oxyder des cello-oligosaccharides ou des fibres cellulosiques, suivie d'une amination réductrice pour greffer des composés aminés sur le matériau cellulosique. Dans ce but, nous avons d'abord démontré l'oxydation du cellobiose et du méthyl cellobiose en utilisant la laccase de Trametes versicolor et le TEMPO comme médiateur. Les conditions d'oxydation ont été optimisées avec le méthyl cellobiose et appliquées à un mélange de cello-oligosaccharides et au cellopentaose. En utilisant l'analyse LC/MS, nous avons montré qu'une large gamme de composés oxydés est obtenue et que la méthode est efficace pour produire des cello-oligosaccharides acides potentiellement intéressants pour les domaines biomédical et nutraceutique. Ensuite, nous avons montré que la réactivité du cellopentaose oxydé avec deux molécules aminées, la p-toluidine et la rhodamine 123 (un colorant aminé), permettait la liaison du composé aminé aux oligosaccharides. À l'aide des techniques LC/MS et MS/MS, nous avons mis en évidence la présence d'une liaison amine forte et covalente entre les colorants et le cellopentaose, élargissant ainsi l'espace chimique accessible par ce procédé hybride. Après avoir réalisé cette preuve de concept, nous avons tenté la teinture de fils de coton. Les fibres cellulosiques sont l'un des principaux matériaux textiles biosourcés et biodégradables. Cependant, le traitement chimique des textiles et notamment les méthodes chimiques utilisées pour fixer les colorants de manière covalente sont extrêmement polluants et nocifs pour la santé. Proposer des alternatives plus respectueuses de l'environnement est un défi mais d'un intérêt primordial pour une entreprise comme PILI, impliquée dans le projet de thèse, qui développe des colorants naturels en utilisant la biologie de synthèse. Ainsi, le potentiel du procédé hybride à deux étapes a été utilisé pour greffer avec succès la p-toluidine, la rhodamine 123 et le rouge acide 33 sur des fils de coton. La liaison covalente établie entre ces colorants et la fibre de coton a été prouvée pour la première fois. De plus, une bonne homogénéité et une bonne résistance au lavage ont été observées pour la teinture avec l'acid red 33, démontrant la robustesse et l'applicabilité de l'approche en situation réelle. Ces résultats originaux ont été brevetés. En testant d'autres colorants aminés, nous avons également montré que la solubilité, la réactivité et la structure du colorant aminé sont des paramètres importants à prendre en compte pour l'optimisation de la teinture, ce qui ouvre la voie à la synthèse à façon de nouveaux colorants aminés adaptés à ce procédé hybride prometteur.The extension of the chemical molecular space accessible from plant biomass by soft and clean methods is a timely topic that stimulates the scientific community in order to develop biobased products with low environmental impact and to widen the field of biomass exploitation. The functionalization of cellulose, the most abundant polysaccharide on the planet, and/or cello-oligosaccharides as described in this thesis is part of this approach. Our objective was to develop a chemo-enzymatic method involving the action of a mediator-assisted laccase to oxidize cello-oligosaccharides or cellulosic fibers, followed by reductive amination to graft amino compounds onto the cellulosic material. To this end, we first demonstrated the oxidation of cellobiose and methyl cellobiose using the laccase from Trametes versicolor and TEMPO as a mediator. Oxidation conditions were optimized with methyl cellobiose and applied to a cello-oligosaccharide mixture and cellopentaose. Using LC/MS analysis, we showed that a wide range of oxidized compounds is obtained and that the method is effective in producing acidic cello-oligosaccharides potentially of interest for the biomedical and nutraceutical fields. Then, we showed that the reactivity of oxidized cellopentaose with two aminated molecules, p-toluidine and rhodamine 123 (an aminated dye), allowed the binding of the amino compound to the oligosaccharides. Using LC/ MS and MS/MS techniques, we provided evidence for the presence of a strong, covalent amine bond between the dyes and cellopentaose, thus enlarging the chemical space accessible through this hybrid process. After completed this proof of concept, we attempted the dyeing of cotton threads. Cellulosic fibers are one of the main biosourced and biodegradable textile materials. However, chemical processing of textiles and especially the chemical methods used to covalently fix dyes are extremely polluting and harmful to health. Providing more eco-friendly alternatives is a challenge but of prime interest for a company like PILI, which was involved in the thesis project and is developing natural dyes using synthetic biology. Thus, the potential of the two-pot/two-step hybrid process was used to successfully graft p-Toluidine, rhodamine 123 and Acid Red 33 onto cotton thread. The covalent bond established between these dyes and the cotton fiber was proven for the first time. In addition, good homogeneity and wash-fastness were observed for acid Red 33 dyeing, demonstrating the robustness and applicability of the approach in real life. These original results have been patented. By testing other amino dyes, we also showed that the solubility, reactivity and structure of the aminated dye are important parameters to be addressed for dyeing optimization, which opens the way to the custom synthesis of new amino dyes suitable for this promising hybrid process
    corecore