416 research outputs found

    Genetic variability detected at the lactoferrin locus (LTF) in the Italian Mediterranean river buffalo

    Get PDF
    Lactoferrin (LTF) is multi-functional protein belonging to the whey protein fractions of the milk. The gene LTF encoding for such protein is considered a potential candidate for body measurement, milk composition and yield. This study reports on the genetic variability at LTF locus in the Italian Mediterranean river buffalo and its possible association with milk yield. Eleven polymorphic sites were found in the DNA fragment spanning the exons 15-16. In particular, the intron 15 was extremely polymorphic with 9 SNPs detected, whereas the remaining 2 SNPs were exonic mutations (g.88G>A at the exon 15 and g.1351G>A at the exon 16) and both synonymous. The genotyping of the informative samples evidenced 3 haplotypes, whose frequencies were 0.6; 0.3 and 0.1 respectively, whereas the analysis of the exonic SNPs showed a perfect condition of linkage disequilibrium (g.88A/g.1351G and g.88G/g.1351A). The association study carried out by using the SNP g.88G>A showed that buffalo LTF gene has no statistically significant influence on daily milk yield. This study adds knowledge to the genetic variability of a species less investigated than the other ruminant species, that may serve as a useful tool for large-scale screening of buffalo populations

    Derivation of multivariate indices of milk composition, coagulation properties, and individual cheese yield in dairy sheep

    Get PDF
    Milk composition and its technological properties are traits of interest for the dairy sheep industry because almost all milk produced is processed into cheese. However, several variables define milk technological properties and a complex correlation pattern exists among them. In the present work, we measured milk composition, coagulation properties, and individual cheese yields in a sample of 991 Sarda breed ewes in 47 flocks. The work aimed to study the correlation pattern among measured variables and to obtain new synthetic indicators of milk composition and cheese-making properties. Multivariate factor analysis was carried out on individual measures of milk coagulation parameters; cheese yield; fat, protein, and lactose percentages; somatic cell score; casein percentage; NaCl content; pH; and freezing point. Four factors that were able to explain about 76% of the original variance were extracted. They were clearly interpretable: the first was associated with composition and cheese yield, the second with udder health status, the third with coagulation, and the fourth with curd characteristics. Factor scores were then analyzed by using a mixed linear model that included the fixed effect of parity, lambing month, and lactation stage, and the random effect of flock-test date. The patterns of factor scores along lactation stages were coherent with their technical meaning. A relevant effect of flock-test date was detected, especially on the 2 factors related to milk coagulation properties. Results of the present study suggest the existence of a simpler latent structure that regulates relationships between variables defining milk composition and coagulation properties in sheep. Heritability estimates for the 4 extracted factors were from low to moderate, suggesting potential use of these new variables as breeding goals
    corecore