7 research outputs found

    IR ion spectroscopy in a combined approach with MS/MS and IM-MS to discriminate epimeric anthocyanin glycosides (cyanidin 3-O-glucoside and -galactoside)

    Get PDF
    Anthocyanins are widespread in plants and flowers, being responsible for their different colouring. Two representative members of this family have been selected, cyanidin 3-O-β-glucopyranoside and 3-O-β-galactopyranoside, and probed by mass spectrometry based methods, testing their performance in discriminating between the two epimers. The native anthocyanins, delivered into the gas phase by electrospray ionization, display a comparable drift time in ion mobility mass spectrometry (IM-MS) and a common fragment, corresponding to loss of the sugar moiety, in their collision induced dissociation (CID) pattern. However, the IR multiple photon dissociation (IRMPD) spectra in the fingerprint range show a feature particularly evident in the case of the glucoside. This signature is used to identify the presence of cyanidin 3-O-β-glucopyranoside in a natural extract of pomegranate. In an effort to increase any differentiation between the two epimers, aluminum complexes were prepared and sampled for elemental composition by FT-ICR-MS. CID experiments now display an extensive fragmentation pattern, showing few product ions peculiar to each species. More noteworthy is the IRMPD behavior in the OH stretching range showing significant differences in the spectra of the two epimers. DFT calculations allow to interpret the observed distinct bands due to a varied network of hydrogen bonding and relative conformer stability

    Correlation between the antimicrobial activity and metabolic profiles of cell free supernatants and membrane vesicles produced by lactobacillus reuteri DSM 17938

    Get PDF
    The aim of the work is to assess the antimicrobial activities of Cell Free Supernatants (CFS) and Membrane Vesicles (MVs), produced by Lactobacillus reuteri DSM 17938, versus Gram-positive and Gram-negative bacteria and investigate their metabolic profiles. The Minimum Inhibitory Concentration was determined through the broth microdilution method and cell proliferation assay and the Minimum Bactericidal Concentration was determined by Colony Forming Units counts. The characteristics of the antimicrobial compounds were evaluated by pH adjustments, proteinase treatment, and size fractionation of the CFS. The cytotoxicity of CFS was tested on two human cell lines. A detailed snapshot of the L. reuteri metabolism was attained through an untargeted metabolic profiling by means of high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) coupled with Electrospray Ionization Source (ESI). The results showed (i) a greater efficacy of CFS and its fractions towards Gram-negative compared to Gram-positive bacteria; (ii) an antimicrobial effect related to pH-dependent compounds but not to MVs; (iii) a molecular weight < 3 KDa as well as an a non-proteinaceous nature of the antimicrobial compounds; and (iv) more than 200 and 500 putative metabolites annotated in MVs and supernatants, covering several classes of metabolites, including amino acids, lipids, fatty and organic acids, polyalcohols, nucleotides, and vitamins. Some putative compounds were proposed not only as characteristic of specific fractions, but also possibly involved in antimicrobial activity

    Nanoemulsions of Satureja montana essential oil. Antimicrobial and antibiofilm activity against avian Escherichia coli strains

    Get PDF
    Satureja montana essential oil (SEO) presents a wide range of biological activities due to its high content of active phytochemicals. In order to improve the essential oil’s (EO) properties, oil in water nanoemulsions (NEs) composed of SEO and Tween-80 were prepared, characterized, and their antimicrobial and antibiofilm properties assayed against Escherichia coli strains isolated from healthy chicken. Since surfactant and oil composition can strongly influence NE features and their application field, a ternary phase diagram was constructed and evaluated to select a suitable sur-factant/oil/water ratio. Minimal inhibitory concentration and minimal bactericidal concentration of NEs, evaluated by the microdilution method, showed that the SEO NE formulation exhibited higher inhibitory effects against planktonic E. coli than SEO alone. The quantification of biofilm production in the presence of NEs, assessed by crystal violet staining and scanning electron microscopy, evi-denced that sub-MIC concentrations of SEO NEs enable an efficient reduction of biofilm production by the strong producer strains. The optimized nanoemulsion formulation could ensure food safety quality, and counteract the antibiotic resistance of poultry associated E. coli, if applied/aerosolized in poultry farms

    Cation-Ï€ Interactions between a Noble Metal and a Polyfunctional Aromatic Ligand: Ag+(benzylamine)

    No full text
    The structure of an isolated Ag+(benzylamine) complex is investigated by infrared multiple photon dissociation (IRMPD) spectroscopy complemented with quantum chemical calculations of candidate geometries and their vibrational spectra, aiming to ascertain the role of competing cation-N and cation-π interactions potentially offered by the polyfunctional ligand. The IRMPD spectrum has been recorded in the 800–1800 cm−1 fingerprint range using the IR free electron laser beamline coupled with an FT-ICR mass spectrometer at the Centre Laser Infrarouge d'Orsay (CLIO). The resulting IRMPD pattern points toward a chelate coordination (N-Ag+-π) involving both the amino nitrogen atom and the aromatic π-system of the phenyl ring. The gas-phase reactivity of Ag+(benzylamine) with a neutral molecular ligand (L) possessing either an amino/aza functionality or an aryl group confirms N- and π-binding affinity and suggests an augmented silver coordination in the product adduct ion (Formula presented.)

    Metabolic profiling of different wild and cultivated Allium species based on high-resolution mass spectrometry, high-performance liquid chromatography-photodiode array detector, and color analysis

    No full text
    Many plants of the genus Allium are widely cultivated and consumed for their nutraceutical and health-enhancing bioactive components effective in many metabolic and infectious diseases. In particular, Allium sativum L. (garlic), the most economically important Allium species, is known to present volatile, comparatively polar sulfur-containing compounds responsible for both the typical garlic aroma and antimicrobial property. More recently, the (moderately) polar portion of garlic metabolome, rich of polyphenols and amino acids, is gaining increasing interest as a source of antioxidants and primary nutrients. In this study, we have explored the chemical diversity of eight different hydroalcoholic extracts obtained by microwave-assisted extraction of white and red crop A. sativum and wild Allium triquetrum, Allium roseum, and Allium ampeloprasum, all originating from the Mediterranean Basin. The aim is to appraise their potential dietetic and healing value through an in-depth chemical characterization and contribute to preserve and exploit natural resources. The multimethodological method applied here is based on an untargeted metabolic profiling by means of high-resolution electrospray ionization Fourier-transform ion cyclotron resonance (ESI FT-ICR) mass spectrometry. More than 850 by ESI(+) and 450 by ESI(−) putative metabolites have been annotated covering all main classes of primary and secondary metabolites, including amino acids, alkaloids, organic and fatty acids, nucleotides, vitamins, organosulfur compounds, and flavonoids. The pigment and polyphenol components have been separated and quantified by a targeted chromatographic high-performance liquid chromatography-photodiode array detector (HPLC-PDA) and CIEL*a*b* colorimetric assay, showing characteristic yellow and red components in each extract, related to a different milieu of anthocyanins and flavonoids as assigned by high-resolution mass spectrometry (MS)

    Metabolomic profiling of fresh goji (Lycium barbarum l.) berries from two cultivars grown in central italy: A multi-methodological approach

    No full text
    The metabolite profile of fresh Goji berries from two cultivars, namely Big Lifeberry (BL) and Sweet Lifeberry (SL), grown in the Lazio region (Central Italy) and harvested at two different periods, August and October, corresponding at the beginning and the end of the maturation, was characterized by means of nuclear magnetic resonance (NMR) and electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR MS) methodologies. Several classes of compounds such as sugars, amino acids, organic acids, fatty acids, polyphenols, and terpenes were identified and quantified in hydroalcoholic and organic Bligh-Dyer extracts. Sweet Lifeberry extracts were characterized by a higher content of sucrose with respect to the Big Lifeberry ones and high levels of amino acids (glycine, betaine, proline) were observed in SL berries harvested in October. Spectrophotometric analysis of chlorophylls and total carotenoids was also carried out, showing a decrease of carotenoids during the time. These results can be useful not only to valorize local products but also to suggest the best harvesting period to obtain a product with a chemical composition suitable for specific industrial use. Finally, preliminary studies regarding both the chemical characterization of Goji leaves generally considered a waste product, and the biological activity of Big Lifeberry berries extracts was also investigated. Goji leaves showed a chemical profile rich in healthy compounds (polyphenols, flavonoids, etc.) confirming their promising use in the supplements/nutraceutical/cosmetic field. MG63 cells treated with Big Lifeberry berries extracts showed a decrease of iNOS, COX-2, IL-6, and IL-8 expression indicating their significant biological activity
    corecore