425 research outputs found

    Magnetic properties of epsilon iron(III) oxide nanorod arrays functionalized with gold and copper(II) oxide

    Get PDF
    A sequential chemical vapor deposition (CVD) - radio frequency (RF)-sputtering approach was adopted to fabricate supported nanocomposites based on the scarcely investigated \u3b5-iron(III) oxide polymorph. In particular, \u3b5-Fe2O3 nanorod arrays were obtained by CVD, and their subsequent functionalization with Au and CuO nanoparticles (NPs) was carried out by RF-sputtering under mild operational conditions. Apart from a multi-technique characterization of material structure, morphology and chemical composition, particular efforts were dedicated to the investigation of their magnetic properties. The pertaining experimental data, discussed in relation to the system chemico-physical characteristics, are directly dependent on the actual chemical composition, as well as on the spatial distribution of Au and CuO nanoparticles. The approach adopted herein can be further implemented to control and tailor different morphologies and phase compositions of iron oxide-based nanomaterials, meeting thus the open requests of a variety of technological utilizations

    XPS analysis of Fe2O3-TiO2-Au nanocomposites prepared by a plasma-assisted route

    Get PDF
    Fe2O3 nanodeposits have been grown on fluorine-doped tin oxide (FTO) substrates by plasma enhanced-chemical vapor deposition (PE-CVD). Subsequently, the obtained systems have been functionalized through the sequential introduction of TiO2 and Au nanoparticles (NPs) by means of radio frequency (RF)-sputtering. The target nanocomposites have been specifically optimized in view of their ultimate functional application in solar-driven H2 generation. In the present study, our attention is focused on a detailed X-ray photoelectron spectroscopy (XPS) characterization of the surface composition for a representative Fe2O3-TiO2-Au specimen. In particular, this report provides a detailed discussion of the analyzed C 1s, O 1s, Fe 2p, Ti 2p, and Au 4f regions. The obtained results point to the formation of pure Fe2O3-TiO2-Au composites, with gold present only in its metallic state and each of the constituents maintaining its chemical identity

    Nanoarchitectonics of metal oxide materials for sustainable technologies and environmental applications

    Get PDF
    Sustainable development compliant with environment and human health protection motivates researchers to explore green solutions towards improved economic and social wellbeing. These objectives, still very far from being achieved especially in developing countries, must necessarily be pursued through the tailored fabrication of low-cost, eco-friendly, efficient and stable multi-functional materials. In particular, nanostructures based on first-row transition metal oxides are amenable candidates for clean energy production, air purification and self-cleaning/anti-fogging purposes, especially if obtained through fabrication strategies allowing a careful modulation of their characteristics. In this highlight, after a brief introduction of the above issues, we provide selected representative examples of green oxide-based nanoarchitectures for the targeted end-uses. Attention is focused on the interplay between the material chemico-physical properties and the resulting functional performances, with the aim of providing some hints to control material behavior by design. In addition, we provide a critical outlook not only on the unique opportunities, but also on the main open challenges related to the use of the above multi-functional materials, in an attempt to stimulate further advancements in these emerging research areas

    A study of Pt-/alpha-Fe2O3 nanocomposites by XPS

    Get PDF
    alpha-Fe2O3 matrices were deposited on Fluorine-doped Tin Oxide (FTO) substrates by Plasma Enhanced- Chemical Vapor Deposition (PE-CVD) from Fe(hfa)_2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N’,N’-tetramethylethylenediamine). The obtained nanosystems were subsequently functionalized by platinum nanoparticles (NPs) via Radio Frequency (RF)-sputtering, exposing samples either to a pre- or post-sputtering thermal treatment at 650°C for one hour in air. Interestingly, Pt oxidation state in the final composite systems strongly depended on the adopted processing conditions. In this work, a detailed X-ray Photoelectron Spectroscopy (XPS) analysis was carried out in order to investigate the material chemical composition, with particular regard to the relative Pt(0)/Pt(II)/Pt(IV) content. The obtained results evidenced that, when annealing is performed prior to sputtering, only PtO and PtO2 are revealed in the final Pt/alpha-Fe2O3 nanocomposite. In a different way, annealing after sputtering results in the co-presence of Pt(0), Pt(II) and Pt(IV) species, the former arising from the thermal decomposition of PtO2 to metallic platinum

    Preterm Labor and Maternal Hypoxia in Patients With Community-Acquired Pneumonia

    Get PDF
    Objective: We sought to determine if preterm labor is associated with the degree of maternal hypoxia in pregnant women with community-acquired pneumonia but no other maternal diseases

    Treatment of Cervical Chlamydial Infection With Amoxicillin/Clavulanate Potassium

    Get PDF
    Objective: To determine if amoxicillin/clavulanate potassium is effective in the treatment of Chlamydia trachomatis endocervicitis

    Intrauterine Pressure Catheter in Labor: Associated Microbiology

    Get PDF
    Objective: The purpose of this study was to determine if bacterial growth occurred in the amniotic fluid of laboring women. Twenty patients who required an intrauterine pressure catheter (IUPC) during labor were studied. Amniotic fluid samples were aspirated during labor and at the time of delivery

    WO3-decorated ZnO nanostructures for light-activated applications

    Get PDF
    In the present work, a two-step vapor-phase route was implemented for the tailored design of ZnO\u2013WO3 nanoheterostructures supported on fluorine-doped tin oxide (FTO) substrates. Under optimized conditions, the sequential use of chemical vapor deposition (CVD) and radio frequency (RF)-sputtering for the deposition of zinc and tungsten oxides respectively, resulted in the growth of calyx-like ZnO nanostructures uniformly decorated by a conformal dispersion of low-sized WO3 nanoparticles. The target materials were characterized by means of a multi-technique approach, with particular regard to their structural, compositional, morphological and optical properties. Finally, their photocatalytic performances were preliminarily tested in the abatement of NOX gases (NO and NO2). Due to the unique porous morphology of the ZnO nanodeposit and the high density of ZnO\u2013WO3 heterojunctions, WO3-decorated ZnO revealed appealing De-NOX characteristics in terms of both degradation efficiency and selectivity. Such features, along with the photoinduced superhydrophilicity and self-cleaning properties of the present nanomaterials, candidate them as promising functional platforms for applications in smart windows and building materials for environmental remediation

    The Early Steps of Molecule-to-Material Conversion in Chemical Vapor Deposition (CVD): A Case Study

    Get PDF
    Transition metal complexes with \u3b2-diketonate and diamine ligands are valuable precursors for chemical vapor deposition (CVD) of metal oxide nanomaterials, but the metal-ligand bond dissociation mechanism on the growth surface is not yet clarified in detail. We address this question by density functional theory (DFT) and ab initio molecular dynamics (AIMD) in combination with the Blue Moon (BM) statistical sampling approach. AIMD simulations of the Zn \u3b2-diketonate-diamine complex Zn(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N\u2032,N\u2032-tetramethylethylenediamine), an amenable precursor for the CVD of ZnO nanosystems, show that rolling diffusion of this precursor at 500 K on a hydroxylated silica slab leads to an octahedral-to-square pyramidal rearrangement of its molecular geometry. The free energy profile of the octahedral-to-square pyramidal conversion indicates that the process barrier (5.8 kcal/mol) is of the order of magnitude of the thermal energy at the operating temperature. The formation of hydrogen bonds with surface hydroxyl groups plays a key role in aiding the dissociation of a Zn-O bond. In the square-pyramidal complex, the Zn center has a free coordination position, which might promote the interaction with incoming reagents on the deposition surface. These results provide a valuable atomistic insight on the molecule-to-material conversion process which, in perspective, might help to tailor by design the first nucleation stages of the target ZnO-based nanostructures
    • …
    corecore