1,035 research outputs found

    Pathogenesis of polymyalgia rheumatica

    Get PDF
    Polymyalgia rheumatica (PMR) is a chronic, inflammatory disorder of unknown cause, almost exclusively occurring in people aged over 50 and often associated with giant cell arteritis. The evidence that PMR occurs almost exclusively in individuals aged over 50 may indicate that age-related immune alterations in genetically predisposed subjects contribute to development of the disease. Several infectious agents have been investigated as possible triggers of PMR even though the results are inconclusive. Activation of the innate and adaptive immune systems has been proved in PMR patients as demonstrated by the activation of dendritic cells and monocytes/macrophages and the altered balance between Th17 and Treg cells. Disturbed B cell distribution and function have been also demonstrated in PMR patients suggesting a pathogenesis more complex than previously imagined. In this review we will discuss the recent findings regarding the pathogenesis of PMR

    Histopathology of the gut in rheumatic diseases

    Get PDF
    The gastrointestinal tract regulates the trafficking of macromolecules between the environment and the host through an epithelial barrier mechanism and is an important part of the immune system controlling the equilibrium between tolerance and immunity to non-self-antigens. Various evidence indicates that intestinal inflammation occurs in patients with rheumatic diseases. In many rheumatic diseases intestinal inflammation appears to be linked to dysbiosis and possibly represents the common denominator in the pathogenesis of different rheumatic diseases. The continuative interaction between dysbiosis and the intestinal immune system may lead to the aberrant activation of immune cells that can re-circulate from the gut to the sites of extraintestinal inflammation as observed in patients with ankylosing spondylitis. The exact contribution of genetic factors in the development of intestinal inflammation in rheumatic diseases needs to be clarified

    Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension

    Get PDF
    Both the Arp2/3 complex and cofilin are believed to be important for the generation of protrusive force at the leading edge; however, their relative contributions have not been explored in vivo. Our results with living cells show that cofilin enters the leading edge immediately before the start of lamellipod extension, slightly earlier than Arp2/3, which begins to be recruited slightly later as the lamellipod is extended. Blocking either the Arp2/3 complex or cofilin function in cells results in failure to extend broad lamellipods and inhibits free barbed ends, suggesting that neither factor on its own can support actin polymerization-mediated protrusion in response to growth factor stimulation. High-resolution analysis of the actin network at the leading edge supports the idea that both the severing activity of cofilin and the specific branching activity of the Arp2/3 complex are essential for lamellipod protrusion. These results are the first to document the relative contributions of cofilin and Arp2/3 complex in vivo and indicate that cofilin begins to initiate the generation of free barbed ends that act in synergy with the Arp2/3 complex to create a large burst in nucleation activity

    Toward the valorization of olive (Olea europaea var. europaea L.) biodiversity: horticultural performance of seven Sicilian cultivars in a hedgerow planting system

    Get PDF
    An intense survey of the Sicilian's olive growing areas for autochthonous germplasm, mainly represented by centennials olive trees (Olea europaea var. europaea L.) apparently older then III centuries, started at the beginning of the 1980s and resulted in the selection of more than 150 cultivars and accessions. This germplasm was propagated in a nursery, by grafting onto seedlings of Olea europaea L., and planted in an experimental orchard, in an olive district located in the South-west of the Island, where they were evaluated for over 30 years and selected for their early bearing, high and constant productivity, as well as high oil content of the fruits and excellent chemical (oleic acid and phenol content) and organoleptic profile of the oil. This paper reports data on the horticultural performances (production, vigor, crop efficiency and oil quality) of four cultivars (\u2018Kalat\u2019, \u2018Olivo di Mandanici\u2019, \u2018Abunara\u2019 and \u2018Minuta\u2019), selected within the Sicilian's autochthonous germplasm trained as 'Free Palmetta' and tested in a hedgerow planting system at three different planting densities: 500, 666 and 1000 trees ha-1. The cultivar \u2018Nocellara del Belice\u2019, \u2018Cerasuola, and \u2018Biancolilla\u2019, widely cultivated in the area where the trial was carried out, were used as references. The outstanding performance of the cultivar \u2018Kalat\u2019 at planting density of 1000 trees ha 121, suggests that this cultivar can be a promising choice for the super high density orchards (SHD). The other cultivars tested did not performed as \u2018Kalat\u2019 and seem not suitable for SHD planting system due to their high vigor. The hedgerow planting system tested, in the first 6 years of planting, increaseed productivity of all cultivars compared to traditional olive orchard typical of the area where the trial was conducted. This hedgerow olive orchard may represent a valid solution to increase orchard productivity and to reduce harvest costs by mechanization, depending on tree high, with straddle or side by side canopy contact machines. Achieve higher yield and reducing management costs using autochthonous, resilient cultivars, could be a new strategy to counteract climate changes. The unique organoleptic profiles of the oils obtained from the cultivars tested, could improve the offer of tasty, flavored and nutraceutical extra virgin olive oils in the international markets. Results highlight the importance of preserving and valorizing biodiversity to increase productivity and resiliency of agricultural systems, facing continuous, fast and deep social and environmental changes

    New patents on topical anesthetics.

    Get PDF
    Anesthesia is defined as a total or partial loss of sensation and it may be general, local or topical, depending on the method of drug administration and area of the body affected. General anesthesia is a reversible state of unconsciousness produced by anesthetic agents, characterized by amnesia, muscle relaxation and loss of sensitivity to pain of the whole body. General anesthetic drugs can be classified into two main groups according to their predominant molecular pharmacological effects: volatile and intravenous agents. Local anesthesia produce a reversible loss of sensation in a portion of the body and it reversibly block impulse conduction along nerve axons and other excitable membrane. All local anesthetics (LA) are membrane stabilizing drugs; they reversibly decrease the rate of depolarization and repolarization of excitable membranes. They act mainly by inhibiting sodium influx through sodium-specific ion channels in the neuronal cell membrane, in particular the voltage-gated sodium channels. When the influx of sodium is interrupted, an action potential cannot arise and signal conduction is inhibited. The main local anesthetic (LA) agents for skin anesthesia are benzocaine (aminoester), prilocaine and lidocaine (aminoamides) which are commercially available as gels, ointments and creams (benzocaine and eutectic mixture of lidocaine and prilocaine) or as a bioadhesive (lidocaine) with different compositions (vehicles and excipients) for adults or pediatric use. Topical anesthetics decrease anxiety, pain and discomfort during cutaneous procedures and provide effective analgesia with rapid onset, prolonged duration and minimal side effects. This article outlines the different classes of topical anesthetics available and gives an overview of the mechanism of action, metabolism of each different class, of the possible complications that can occur because of their use and their possible treatment options and new patents. Ā© 2014 Bentham Science Publishers

    Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study

    Get PDF
    Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1g), under reversed gravity (-1g), or at constant speed (0g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1g targets than either 0g or -1g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1g to 0g and to -1g. In the second experiment, subjects intercepted 1g, 0g, and -1g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1g targets in the first experiment, were also significantly more active during 1g trials than during -1g trials both in RM and LAM. The activity in 0g trials was again intermediate between that in 1g trials and that in -1g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM

    Effect of Exercise on Fatty Acid Metabolism and Adipokine Secretion in Adipose Tissue

    Get PDF
    Increased physical activity is an optimal way to maintain a good health. During exercise, triacylglycerols, an energy reservoir in adipose tissue, are hydrolyzed to free fatty acids (FAs) which are then released to the circulation, providing a fuel for working muscles. Thus, regular physical activity leads to a reduction of adipose tissue mass and improves metabolism. However, the reduction of lipid reservoir is also associated with many other interesting changes in adipose tissue FA metabolism. For example, a prolonged exercise contributes to a decrease in lipoprotein lipase activity and resultant reduction of FA uptake. This results in the improvement of mitochondrial function and upregulation of enzymes involved in the metabolism of polyunsaturated fatty acids. The exercise-induced changes in adipocyte metabolism are associated with modifications of FA composition. The modifications are adipose tissue depot-specific and follow different patterns in visceral and subcutaneous adipose tissue. Moreover, exercise affects adipokine release from adipose tissue, and thus, may mitigate inflammation and improve insulin sensitivity. Another consequence of exercise is the recently described phenomenon of adipose tissue ā€œbeiging,ā€ i.e., a switch from energy-storing white adipocyte phenotype to thermogenic FA oxidizing beige adipocytes. This process is regulated by myokines released during the exercise. In this review, we summarize published evidence for the exercise-related changes in FA metabolism and adipokine release in adipose tissue, and their potential contribution to beneficial cardiovascular and metabolic effects of physical activit
    • ā€¦
    corecore