2 research outputs found

    A Transgenic Minipig Model of Huntington\u27s Disease

    Get PDF
    Background: Some promising treatments for Huntington\u27s disease (HD) may require pre-clinical testing in large animals. Minipig is a suitable species because of its large gyrencephalic brain and long lifespan. Objective: To generate HD transgenic (TgHD) minipigs encoding huntingtin (HTT)1–548 under the control of human HTT promoter. Methods: Transgenesis was achieved by lentiviral infection of porcine embryos. PCR assessment of gene transfer, observations of behavior, and postmortem biochemical and immunohistochemical studies were conducted. Results: One copy of the human HTT transgene encoding 124 glutamines integrated into chromosome 1 q24-q25 and successful germ line transmission occurred through successive generations (F0, F1, F2 and F3 generations). No developmental or gross motor deficits were noted up to 40 months of age. Mutant HTT mRNA and protein fragment were detected in brain and peripheral tissues. No aggregate formation in brain up to 16 months was seen by AGERA and filter retardation or by immunostaining. DARPP32 labeling in WT and TgHD minipig neostriatum was patchy. Analysis of 16 month old sibling pairs showed reduced intensity of DARPP32 immunoreactivity in neostriatal TgHD neurons compared to those of WT. Compared to WT, TgHD boars by one year had reduced fertility and fewer spermatozoa per ejaculate. In vitro analysis revealed a significant decline in the number of WT minipig oocytes penetrated by TgHD spermatozoa. Conclusions: The findings demonstrate successful establishment of a transgenic model of HD in minipig that should be valuable for testing long term safety of HD therapeutics. The emergence of HD-like phenotypes in the TgHD minipigs will require more study

    Porcine Model of Huntington\u27s Disease

    Get PDF
    At present, we are probably the only research facility to be breeding transgenic Huntington\u27s disease minipigs (TgHD). These minipigs express N‐terminal part of human mutated huntingtin including 124Q under the control of human huntingtin promoter. The founder animal, born in 2009, gave birth to four subsequent generations with an equal contribution of wild‐type (WT) and transgenic (TgHD) piglets in all litters. We take different approaches, some of which are unique for large animal models, to study the phenotype development comparing WT and TgHD siblings. In this chapter, we review these approaches and the phenotype progression in the minipigs. Additionally, we outline perspectives in generation of new models using novel methodology and the potential of pig models in preclinical HD studies
    corecore