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Abstract

At  present,  we  are  probably  the  only  research  facility  to  be  breeding  transgenic
Huntington's  disease minipigs (TgHD).  These minipigs express N‐terminal  part  of
human mutated huntingtin including 124Q under the control of human huntingtin
promoter. The founder animal, born in 2009, gave birth to four subsequent generations
with an equal contribution of wild‐type (WT) and transgenic (TgHD) piglets in all
litters.  We  take  different  approaches,  some  of  which  are  unique  for  large  animal
models, to study the phenotype development comparing WT and TgHD siblings. In
this  chapter,  we  review  these  approaches  and  the  phenotype  progression  in  the
minipigs. Additionally, we outline perspectives in generation of new models using
novel methodology and the potential of pig models in preclinical HD studies.

Keywords: large animal models, pig, huntingtin, transgenic animal, Huntington's
disease

1. Introduction

The cause of Huntington's disease (HD), an abnormal polyglutamine elongation of the gene
encoding the huntingtin protein (Htt), is known for more than two decades, but the effective
treatment is still lacking. Animal models of Huntington's disease represent an indispensable
part of disease investigation. It offers better understanding of molecular mechanisms involved
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in the disease pathology and above all testing novel potential therapeutic approaches in HD
treatment. Many different HD animal models were created. Predominantly used rodent models
represent an important tool for understanding the complex progression of HD phenotype and
have been used for many preclinical studies. However, the rodent's small brain size, differences
in neuroanatomy to humans and short lifespan limit their application for detailed modelling of
the pathogenic features of human disease. Moreover, wider scale of models is desired especially
for safety and tolerability tests of potential therapeutics and longitudinal studies of HD.

In consequence, large animal models of HD, including non‐human primate [1], sheep [2] and
pigs [3–5], have been generated. The advantages of pigs, in particular the minipigs, are the
adult body weight of 70–90 kg, relatively large gyrencephalic brain with similar neuroanatomy
to humans, longer lifespan of 12–15 years and other anatomical, physiological and metabolic
similarities to humans [6]. Because of their sophisticated cognitive and motor abilities, pigs are
suitable for longitudinal learning, memory and behavioural studies. Furthermore, pigs are
excellent models for disease progression studies, because of their long lifespan. The pig brain
size and neuroanatomy make them available to be used in neurosurgical procedures and non‐
invasive imaging methods similar to those used in human diagnostics [7, 8]. In addition, pigs
are farm animals, and thus, the social tolerance for using them as experimental animals is
higher than in other large animal models such as non‐human primates or animals regularly
kept as pets. Moreover, the minipig's litter size is usually six to eight pups, thus providing a
good experimental group. Hence, the creation of HD minipig model offers many advantages
for the HD studies.

Up to now, three attempts to generate HD transgenic pig models have been reported. In 2001,
porcine mutant huntingtin (75Q) cDNA was microinjected in the pronucleus of fertilized eggs
[3]. Several copies of the transgene were incorporated in the porcine genome, but there might
have been problems with the gene intactness or transcriptional silencing. No HD phenotype
was reported. In 2010, HD transgenic minipig expressing the N‐terminal part of human
mutated huntingtin with 105Q was created using the somatic cell nuclear transfer strategy
(N208‐105Q) [4], but these piglets died 53 h after birth, which could be due to the incomplete
reprogramming during somatic cells nuclear transfer.

The transgenic HD minipig (TgHD) model created in Libechov expresses N‐terminal part of
human mutated huntingtin (N548‐124Q) under the control of human huntingtin promoter. It
was generated using strategy based on lentiviral infection of porcine embryos [5]. The mutant
huntingtin was detected at the level of RNA and protein in central nervous system (CNS) as
well as in peripheral tissues. The fluorescent in situ hybridization (FISH) and genomic analysis
confirmed the incorporation of one copy of mutant huntingtin (mHTT) into non‐coding
sequence of the first porcine chromosome (1q24‐q25) not interrupting any coding sequence in
the pig genome. However, TgHD minipigs possess both endogenous alleles coding wild‐type
Htt (wtHtt). Because the reducing amount of wtHtt has substantial influence on disease
development in HD patients [9], the physiological level of wtHtt in TgHD minipigs may
postpone a phenotype progression. Most of the minipigs are now in the preclinical stage of
HD. However, we observe the disease progression in the oldest animals based on behavioural,
immunological, immunohistological and biochemical methods.
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Our transgenic minipig model represents an advantageous model for studying wide range of
aspects of HD like molecular mechanisms of HD in primary cells isolated from TgHD and WT
animals, brain and other organ structure using high‐resolution imaging techniques or post‐
mortem, preclinical symptoms of the disease and longitudinal non‐invasive studies. Impor‐
tantly, the minipig model is feasible for preclinical therapeutic studies (unpublished results)
and thus can serve as the link between rodents and humans.

2. Impairment of male fertility: testes and sperm pathology

Although HD is characterized mainly by neurodegeneration, we at first discovered a repro‐
ductive failure in TgHD boars, starting at the age of 13 months and worsening with age.

In general, wild‐type and mutant forms of Htt are expressed in many tissues, mostly in brain
and testes [10]. Furthermore, the testes and brain display the most comparable gene expression
pattern compared to other tissues [5]. Testicular degeneration was a long time unknown feature
of HD. Interestingly, the first reports of testicular degeneration were described in mouse
models. R6/2 mice showed dramatic atrophy of testes, which started at 4 weeks of age [11].
Also in YAC128 mouse models, mHtt causes testicular atrophy and male fertility problems
occurring before neurodegeneration [12–14]. In human patients, only analysis of testes from
post‐mortem samples was performed [13]. This study showed a decreased number of sper‐
matocytes and spermatids in HD patients; the seminal tubules of the patients were thicker than
the seminal tubules of the healthy controls.

In our TgHD minipig model, we observed reduction in spermatozoa [5] and also their
functional defect. In vitro penetration assay showed impairment of TgHD spermatozoa to
penetrate oocytes with intact zona pellucida, which was in accordance with lower sperm
motility and progressivity. Electron microscopy (EM) revealed sperm and testicular morphol‐
ogy defects. Deformity of nucleus associated with incomplete chromatin condensation,
abnormal acrosome,and also the absence of residual bodies were seen in TgHD spermatozoa.
Proximal cytoplasmic droplets were often associated with disorganized mitochondrial
sheaths (Figure 1). The presence of the polyglutamine‐containing proteins was observed in
structures in the spermatozoa tail of TgHD boars using immunocytochemistry (ICC) and
Western blot (WB) [14].

Moreover, detailed examination of TgHD testes showed degenerative changes in seminiferous
tubules. Apoptotic spermatogonia and Sertoli cells were detected. EM of 24‐ and 36‐month‐
old boars showed degenerative changes. The increased density of cytoplasm of Sertoli cells
associated with its vacuolization, swollen mitochondria and dilated endoplasmic reticulum
and clumps of heterochromatin in the nucleus were observed. Lamina basalis was often thick
and undulated, made up of several layers due to the reduction in tubules diameter in the
absence of spermatogenic elements (Figure 2). Seminiferous tubules of testes from the WT
siblings were intact [14].
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Figure 1. Morphologic defects of spermatozoa in TgHD boar's sperm. (A) Cytoplasmic droplet on midpiece of sperm.
(B) Double, triple‐T, quadruple‐Q axoneme with fused mitochondrial sheaths. (C) Break on midpiece of sperm tail.

Figure 2. Seminiferous epithelium of TgHD boar at the age of 36 months. (A) Spermatogenic cells and (B) Sertoli cell
undergoing apoptosis, increased chromatin condensation, increased density and vacuolization of cytoplasm.

In addition, the testes from 24‐month‐old TgHD boars were analysed using non‐invasive
methodology of 31P magnetic resonance spectroscopy (MRS) [15]. The results of this study
showed significant reduction in relative phosphodiester (PDE) concentration in testicular
parenchyma of TgHD boars compared to wild‐type ones of the same ages. A decreased level
of PDE/γ‐ATP ratio in TgHD minipigs may be related to decreased concentration of seminal
fluid or the changes in sperm motility. This hypothesis agrees with the observed sperm
pathology in both our previous studies discussed above [5, 14].

3. Markers of neurodegeneration

3.1. Aggregates and fragmentation

It is known that the most affected organ in HD is the brain, especially the medium‐sized spiny
neurons in striatum, and the pyramidal cells in the cortex are disrupted [16]. The hallmark of
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the disease is an accumulation of misfolded proteins, resulting in the formation of aggregates
[17]. Nevertheless, the precise role of the aggregates in pathogenesis of HD is still not clear.
Recent studies suggest their protective role against the effects of mHtt [18]. Moreover, smaller
soluble forms of mHtt and huntingtin oligomers were described to be toxic to the cells and to
be the key factors of cellular dysfunction [19]. Furthermore, the inhibition of the mHtt
proteolysis reduces neurotoxicity [20]. In affected areas of the brain in human patients, the
expanded Htt is found rather in fragmented, oligomerized and polymerized forms [21].

Figure 3. Fragmented mHtt detected in 24‐ and 36‐month‐old TgHD minipigs compared to their WT siblings in differ‐
ent tissues by polyQ 3B5H10 antibody. Western blot analysis shows fragmented forms of mHtt in (A) cortex and (B)
testes of TgHD minipigs. (C) Comparing to muscles of TgHD minipigs, testes show increased amount of fragmented
mHtt of 24‐ as well as 36‐month‐old minipigs. Reprinted with permission of CzMA JEP adopted from CeskSlovNeurol
N2015; 78/111 (Suppl 2).

In our TgHD minipig model, we continuously test the aging animals for aggregates by several
methods, which have been previously used in other animal models. The main focus is on the
visualization of aggregates by immunohistochemistry (IHC) using anti‐Htt antibodies, some
of which are specific to higher molecular formation. For example, MW8 is a commercial
antibody against N‐terminal end, recognizing alpha‐helical, random coil and extended
conformations of huntingtin. In addition to the antibodies, certain dyes like Congo red stain
protein aggregate by binding to fibrils with enriched β‐sheet conformation [22, 23]. Another
biochemical method suitable for detection of aggregates is the filter retardation assay based
on the fact that very large polymers cannot pass through a 0.2‐µm cellulose acetate filter and
therefore can be identified [24]. Seprion assay uses beads binding amyloid structures, which
can be then revealed on WB [25]. Velocity sedimentation method is based on fractionation of
the sample by ultracentrifuge and detection of proteins in different fractions by SDS‐PAGE
and WB [26]. Htt oligomers and monomers can be detected by WB, taking advantage of
oligomer retardation in stacking gel. Also, SDS agarose gel electrophoresis (AGERA) [27], 1%
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agarose gel with a lower SDS concentration (0.1%) without reducing agent and heating of the
samples, can be used. Another approach is an immunoprecipitation with oligomer‐specific
antibodies (OC, A11). In order to distinguish between soluble and insoluble forms stabilized
by covalent bonds, formic acid that cannot dissolve covalent but can dissolve non‐covalent
bonds can be used.

Up to date, we have detected only a very few aggregates in 24‐ and 36‐month‐old TgHD brain
sections by IHC (unpublished data) in comparison with the massive incidence of aggregates
in the R6/2 mice brain sections. We suspect that the aggregate formation will progress in older
animals. Nevertheless, we could detect N‐terminal mHtt fragments in 24 months of age in brain
and testes increasing with the age. Interestingly, most of the other tissues such as heart and
muscles do not show fragmentation at 24 months. Only a small amount of fragments can be
detected in muscles of 36‐month‐old animals, suggesting progression of the disease with age
(Figure 3) [28]. Furthermore, we detected smears in the stacking gels of 3–8% polyacrylamide
gels in TgHD cortex and testes samples, also starting at 24 months of age [28].

3.2. Magnetic resonance imaging (MRI) and spectroscopy (MRS)

Neurodegeneration in minipigs can be observed by several approaches. One of them is a non‐
invasive approach by MRI. MRI including objective motor measures (Q‐motor) showed a
relationship between a decrease in brain volume and progression of HD in patients [29–31]. It
was shown that MRI applicable for the brain volume assessment can be performed also with
Libechov TgHD and WT minipigs [32].

Magnetic resonance spectroscopy (MRS), also known as nuclear magnetic resonance (NMR)
spectroscopy, is a non‐invasive method used in research and clinical practice that allows an
evaluation of in vivo metabolism at the molecular level [33]. Concentrations of metabolites,
such as N‐acetylaspartate, creatine, phosphocreatine, glutamate, glutamine, choline‐contain‐
ing compounds, inositol, γ‐aminobutyric acid and others, can be determined by 1H MRS [34].
1H MRS has previously been considered as a biomarker method in pre‐manifest and early
stages of HD [35–37]. In order to evaluate in vivo brain metabolite differences, single‐voxel
spectroscopy (SVS) has been primarily used [35, 38, 39]. However, several studies have also
used two‐dimensional chemical shift imaging (2D‐CSI) [33, 40, 41]. Studies measuring changes
by MRS revealed different values of metabolite concentrations in patients with HD [34, 35, 42,
43]. Recently, several longitudinal clinical studies have been performed. They showed a
decrease in creatine and other metabolites (myo‐inositol, N‐acetylaspartate and choline) in
striatum, white matter axial diffusivity and connectome changes in HD gene carriers during
disease onset [44–46]. Various changes in brain metabolite concentration have also been found
in different HD animal models (mice, non‐human primates). Moreover, our scientific team also
determined changes in the brain of TgHD minipigs before HD onset using 1H magnetic
resonance (MR) spectroscopy. Measurements were performed on a 3 T MR scanner using a
single‐voxel spectroscopy sequence for spectra acquisition in the white matter and chemical
shift imaging sequence for measurement in the striatum, hippocampus and thalamus.
Similarly to HD patients and HD animal models, we revealed significant decrease in total
creatine (tCr) in the thalamus of 2‐year‐old TgHD boars accompanied with a non‐significant
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decrease in tCr in all examined brain areas. This aspect resulted into significant changes in
metabolite ratios (increased metabolic ratios of total choline tCho/tCr in the striatum, thalamus,
hippocampus as well as white matter). Creatine represents an important marker for brain
energy metabolism, and we had supposed that the majority of the observed changes were
predominantly related to changes in energy metabolism and mitochondria functions in TgHD
caused by the presence of transgenic human mutated huntingtin [15].

3.3. Further markers of HD progression

The Htt protein is part of many cell processes and it interacts with various proteins in cells [16].
Different markers can be used for characterization of HD progression in large animal models.
Typical markers in the brain include medium‐sized spiny neuron marker (DARPP32), marker
for activated microglia (IBA1), an astrocyte marker (GFAP), marker associated with cell
apoptosis (Cas3), markers of Golgi complex (ACBD3 and RHES) and marker of neuronal
secretion (BDNF). We use coronal brain section containing striatum for immunohistochemical
staining and measure intensity of the labelling in different brain areas: (1) motor cortex, (2)
somatosensory cortex, (3) insular cortex, (4) caudate nucleus and (5) putamen, according to 3D
view model of pig brain (Figure 4).

Figure 4. Identification of brain regions in porcine coronal brain section for evaluation. (A) Digitalized section staining
with interest antibody. (B) Virtual section from 3D view model of pig brain (from program 3D slicer—slicer.org). 1.
Motor cortex, 2. somatosensory cortex, 3. insular cortex, 4. caudate nucleus and 5. putamen.

Among the markers tested, medium‐sized spiny neuron marker (DARPP32) was shown to be
decreased in the striatum of our transgenic minipig model at 16 months [5]. DARPP32 mediates
the response of medium‐sized spiny neurons localized in the striatum to the activation of a
dopamine receptor D1 [47]. The loss of DARPP32 was also shown in the brain of 7‐month‐old
ovine transgenic HD model [2]. These results are in agreement with loss of D1 receptor detected
in HD patients [48].

Next, apoptosis can be detected by higher expression of caspases. Caspase 3 was elevated in
brain of HD minipig (N208‐105Q), which died 53 h after birth [4]. Caspase 3 belongs to effectors
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of apoptosis, and its activation mediates apoptotic cell death in HD [49]. Activated caspase 3
was also found in post‐mortem human HD brain [50].

4. Immune response in central nervous system (CNS) and in the periphery

The principal aim of current research in Huntington's disease is focused on detection of the
pre‐manifest disease stages [51].

Not all aberrant changes in HD are secondary to the neuronal dysfunction, but they might be
caused by the expression of mutant Htt in the peripheral tissues [52, 53]. It is known that the
immune system is implicated in the pathogenesis of HD [54–57]. Therefore, inflammation is a
growing area of research in HD.

The ubiquitously expressed mHtt may likely cause parallel inflammation in central nervous
system (CNS) and in the periphery [58, 59] (Figure 5). Björkqvist et al. showed that immuno‐
modulatory molecules IL‐6 and IL‐8 are over‐expressed in the striatum and also in plasma of
HD patients [54].

Figure 5. Immune activation in TgHD minipigs. The activation of immune system induced by mutant huntingtin, in
CNS (central) and in the periphery (peripheral) as well.

In order to identify the mechanisms of immune system dysfunction in HD, our porcine model
of HD was used [60]. The advantage of this large animal model is the ability to obtain samples
from WT and transgenic TgHD animals with similar genetic background. The CNS immune
response was measured by the levels of cytokines in CSF and in the secretome (in culture
media) of cerebellar microglial cells. The inflammation in the periphery was simultaneously
measured by the cytokine levels in serum and culture media of CD14+ blood monocytes. The
samples were collected from WT and TgHD minipigs at the age of 9–36 months. TgHD
minipigs at this age represent the pre‐symptomatic stage of HD, thus offering the opportunity
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to study early pathologic mechanisms before the disease onset. Multiplexing bead‐based assay
allowing the measurement of seven different porcine cytokines (IL‐1β, IL‐4, IL‐8, IL‐10,
IFNγ, IFNα and TNFα) was used. Microglia secretomes and CSF of TgHD minipigs showed
decreased levels of IFNα and IL‐10, whereas microglia secretome as well indicated increased
levels of IL‐8 and IL‐1β compared to WT animal controls. The difference in cytokine production
in TgHD vs. WT samples is possibly caused by the presence of mutated Htt in TgHD microglia.
Furthermore, increased levels of IL‐8 were observed in TgHD serum samples.

This study suggested IFNα, IL‐10, IL‐8 and IL‐1β as promising biomarkers reflecting immu‐
nopathological mechanisms of HD minipig model in the disease pre‐symptomatic stage.
Identifications of these candidate biomarkers in CSF and serum could be valuable for moni‐
toring the HD progression and therapy. Better understanding of the earliest changes in brain
tissue as well as in periphery system may lead to preventive or disease‐modifying therapies
[60].

5. Behavioural, motoric and cognitive studies

Behaviour is an important parameter in several neuroscience disciplines. People with HD have
great difficulties with coordination, focusing and learning. The symptoms include involuntary
chorea‐like movements, poor balance, slurred speech, difficulty swallowing, cognitive
difficulty and personality change. HD patients often have depression, anxiety, irritability and
apathy. Interestingly, not all symptoms are experienced by all patients [61]. Mice models also
exhibit difficulties in a number of tasks, namely swimming, beam traversing and maintaining
balance on the rota rod at the fastest rotating speeds [62].

Several behavioural, cognitive and motoric tests using mainly F3 generation of Libechov TgHD
and WT minipigs were established in George Huntington's Institute in Muenster [61]. The list
includes GAITRite automated acquisition system, a carpet denoting walking, which can be
used to detect imbalance and disturbance in walking. Hurdle test aims also at assessing motor
coordination of gait and tongue, and coordination test detects tongue protrusion. A colour
discrimination test, dominance test and a startbox back and forth test assess cognitive deficits
in minipigs. The tests are easily done with Libechov TgHD and WT minipigs, and they are
reproducible. Nevertheless, this group of tested minipigs, where the oldest were three and half
years old, did not show any differences in performing above‐mentioned tests in TgHD
compared to WT. We have also performed some of these tests in Libechov using the oldest F0
and F1 generations of the minipigs. We established several additional tests involving a little
stressful situation, for example, climbing on a balance beam or a pullback test. The oldest two
animals, starting at 5 years, exhibit motoric defects and anxiety behaviour (data not published);
however, this does not constitute a significant group of animals yet.

Additionally, we established, together with Technical University in Prague, vocalization—
grunting test of the TgHD minipigs (Figure 6). Transgenic mHtt songbirds (145Q), created by
lentiviral injection into the embryos, reflect severe vocal disorders associated with HD
neuropathology [63]. It is also known that large majority of HD patients, more than 90%,
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develop voice and speech dysfunction, abnormalities in speech timing, articulation deficits
and irregular loudness [64]. Some of these symptoms start already before the onset of the
disease [64–68]. Pigs have similar articular organs as humans, and thus, similar motor
disturbances like rigidity, chorea and bradykinesia can be expected. A preliminary data and
the experiment set‐up were published [69].

Figure 6. A pig with a fixed microphone. Microphone records sounds with the MP3 player. These recordings are then
transferred to a computer for audio analysis.

We observed three types of grunting:

1. Single grunts—associated with investigatory behaviour or contact calls in group.

2. Single squeals—higher level of arousal, but function is similar as single grunts.

3. Rapidly repeated grunts—appear to have either a greeting or threat function [69].

Several minutes long recordings of different grunting were taped, and the results will be
analysed using acoustic software Praat used in evaluation of humans [70].

5.1. Telemetry

The long‐term collection of neurobehavioral and other physiological data using telemetry
devices represents a critical component of differently focused animal studies. Such devices
have to be implanted in a location that is safe, well tolerated and functional. The major
advantage of telemetry approach is the collection of biopotentials from freely moving exper‐
imental animals without the presence of disturbing factors—e.g. researchers—during different
time periods (even in nonstop mode) that results into relatively objective data, which can be
analysed by software.
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Pigs, piglets and especially minipigs represent convenient large animal models for biomedical
studies also in relation to the telemetry approach thanks to their relatively small size, charac‐
terized health status and ease of training and handling [71–74].

Important early features identified in HD patients include sleep deficits and disrupted
circadian organization; these also correlate with symptom severity. Similar observations were
also made in R6/2 mouse model [75] and ovine model of HD [76]. Mutated Htt action and loss
of wild‐type Htt function affect not only the brain structures, but also peripheral tissues or
organ systems like testes, heart, pancreas, skeletal muscle, etc. [11, 52, 77, 78]. A major cause
of death in HD patients includes heart disease. Moreover, in the R6/1 model, strong dysfunction
of the autonomic cardiac nervous system was detected resulting in cardiac arrhythmias and
sudden death [79].

The telemetry approach was applied to detect and analyse a pathological pattern in physical
activity of TgHD boars at the age of 3 years [80]. In this study, we included five TgHD and five
wild‐type (WT) animals for comparison. The physical activity was measured by the telemetric
system rodentPACK2 (emka TECHNOLOGIES, France), whereas transmitters were placed
into the collar. For reducing collar influence on minipig activity, the boars wore collars without
transmitters a few days before beginning of the study. The analysis showed significant decrease
in total acceleration representing physical activity in TgHD boars between 4:40 and 5:30 a.m.
(after night sleep and before morning feeding) in comparison with WT boars (Figure 7). This
could be explained with disturbed energy metabolism.

Figure 7. Total acceleration of TgHD and WT animals between 4:40 and 5:30 a.m. during six following days. Each col‐
umn (blue—WT, red—TgHD) represents averaged total acceleration of five animals (TgHD or WT). Reprinted with
permission of CzMA JEP adopted from CeskSlovNeurol N2015; 78/111 (Suppl 2).

Porcine Model of Huntington's Disease
http://dx.doi.org/10.5772/66353

85



6. Perspective and engineering of new models

A variety of HD animal models has been already engineered; nevertheless, it is necessary to
generate improved models. While each model has some of the typical markers of HD, no model
recapitulates the full phenotype of HD patients. The advantage of HD for model engineering
is the conditionality of a single gene by the mutation in the polyQ stretch of HTT gene.
However, the mHtt cytotoxicity may include more factors influencing the disease develop‐
ment, and it is not yet clear what mechanism causes the HD pathology. So the question is what
should the ideal HD model carry out in the genome? New approaches of gene editing allow
the sequence‐specific targeting of genome and the design of modifications in the endogenous
HTT locus. Recently, the CRISPR/Cas9 system has become the most widespread system due
to the universality of the available engineered nucleases, and there are a lot of recent improve‐
ments in its application.

The CRISPR/Cas9 system enables the site‐specific modification at a desired region in the
genome. This system, just as programmable nucleases, namely the transcription activator‐like
effector nuclease (TALEN) and the zinc‐finger nuclease (ZFN), is feasible to combine with the
several genetic engineering applications. The somatic cell nuclear transfer (SCNT) together
with the microinjection into the zygote belongs between the widely employed methods of
generating genetically modified porcine models. There are advantages and disadvantages in
both approaches. The SCNT gives us an opportunity to select the genetically modified cells
and transfer only embryos with modified genome into a recipient sow. On the other side,
genetic diversity of offspring is conserved using microinjection into the zygotes [81]. First
genome edited pig was generated in 2011 followed by many other porcine knockout (KO)
models [82]. However, the generation of porcine knock‐in (KI) model remains a huge challenge
for the researchers due to certain limitations such as incompetence of porcine embryonic stem
cells and induced pluripotent stem cells for SCNT [83], founder mosaicism [84], abnormal
epigenetic programming resulting in prenatal and early postnatal death [85] and other
technical difficulties. Nevertheless, Peng et al. [86] successfully generated CRISPR/Cas9‐
mediated knock‐in pig. They inserted human albumin (ALB) cDNA into porcine ALB locus.
This approach is giving a hope to replace one wild‐type allele and to create the DNA config‐
uration of HD patients.

7. Conclusion

The Libechov TgHD minipig constitutes an animal model with slowly progressing phenotype
similar to HD patients. The piglets are born with no evident defects, and the first detectable
changes start at the age of 13 months. The TgHD boars have testicular degeneration and show
a reproductive failure with low number of spermatozoa incompetent to penetrate the oocyte.
MRS analysis of testes detected a significant reduction in relative PDE concentration in
testicular parenchyma of 24‐month‐old TgHD boars, which could be related to changes in
sperm motility. At 16 months, we detect lower expression of DARPP32 in TgHD striatum.
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Fragmentation of mHtt, especially in the brain and testes, starts at 2 years and increases with
age, similar to the appearance of oligomeric smears containing mHtt. The study of immune
response in CSF and periphery suggested IFNα, IL‐10, IL‐8 and IL‐1β as promising biomarkers
reflecting immunopathological mechanisms of the pre‐symptomatic stage of HD in the minipig
model. Several non‐invasive methods have been established in Libechov as well as in the
George Huntington Institute, testing motor coordination, behaviour and cognition of TgHD
minipigs. These methods can be applied to porcine models generated for various neurological
diseases. MRI and MRS are the methods of choice to track any changes in clinical studies. Thus,
relevant values obtained in porcine preclinical MRI studies can be easily translated to clinics.
Moreover, we have already described some changes in the preclinical stage, namely significant
decrease in total creatine (tCr) in the brains of 2‐year‐old TgHD animals. Also, telemetric
studies showed differences in physical activity patterns of 3‐year‐old TgHD compared to WT
minipigs between 4:40 and 5:30 a.m. The oldest two animals, starting at the age of 5 years, show
motoric defects and accentuated anxiety behaviour. Therefore, we expect the clinical onset of
HD in TgHD animals with the N‐terminal part of human mHtt at the age of approximately 6 
years. This fact needs to be confirmed using a higher number of animals reaching this age.
Meanwhile, due to the availability of novel transgenic technologies, we are attempting to
generate a knock‐in humanized minipig in order to produce even better large animal model
for HD.

The large animal HD models are the missing link between the mouse models and human
patients; they may identify early dysfunctions of HD pathophysiology that could be used for
future HD treatment approaches. There is an urgent need to identify specific biomarkers and
to generate disease‐modifying treatments that could be able to delay the HD onset or even
reverse the disease progression [87, 88]. Our porcine HD model described here has already
been used in preclinical testing of therapeutic strategies to reduce the amount of mHtt and
thus proved to be important in this field.
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