227 research outputs found

    Guided growth for correction of knee flexion deformity: a series of four cases

    Get PDF
    Fixed knee flexion deformity can present as an insidious and significant problem in diverse etiologies, most commonly in cerebral palsy. Traditional surgical intervention has included posterior capsulotomy and supracondylar femoral osteotomy, both of which carry significant associated morbidity and risks. In the skeletally immature patient, guided growth may be used to correct or substantially diminish the deformity. We are presenting our early experience encompassing four subjects who completed instrumented gait analysis both prior to and after distal femoral anterior guided growth (hemiepiphysiodesis). Changes in gait and function resulting from surgery in each individual are reported. Outcomes indicate improved knee range of motion and alleviation of crouch at the knee with secondary improvements in the ankle, hip and pelvis. Three subjects with initially slow gait velocity improved to within normal limits by demonstrating increased stride length. A measure of overall gait kinematics showed improvements in all limbs. Anterior guided growth (hemiepiphysiodesis) of the distal femur resulted in positive quantitative changes in all four patients, though degree and types of changes were variable in this small series. Encouraged by these findings, we now prefer guided growth to extension supracondylar osteotomy for the skeletally immature patient with fixed knee flexion deformity

    Simple Quantum Error Correcting Codes

    Full text link
    Methods of finding good quantum error correcting codes are discussed, and many example codes are presented. The recipe C_2^{\perp} \subseteq C_1, where C_1 and C_2 are classical codes, is used to obtain codes for up to 16 information qubits with correction of small numbers of errors. The results are tabulated. More efficient codes are obtained by allowing C_1 to have reduced distance, and introducing sign changes among the code words in a systematic manner. This systematic approach leads to single-error correcting codes for 3, 4 and 5 information qubits with block lengths of 8, 10 and 11 qubits respectively.Comment: Submitted to Phys. Rev. A. in May 1996. 21 pages, no figures. Further information at http://eve.physics.ox.ac.uk/ASGhome.htm

    Quantum Error Correcting Codes Using Qudit Graph States

    Full text link
    Graph states are generalized from qubits to collections of nn qudits of arbitrary dimension DD, and simple graphical methods are used to construct both additive and nonadditive quantum error correcting codes. Codes of distance 2 saturating the quantum Singleton bound for arbitrarily large nn and DD are constructed using simple graphs, except when nn is odd and DD is even. Computer searches have produced a number of codes with distances 3 and 4, some previously known and some new. The concept of a stabilizer is extended to general DD, and shown to provide a dual representation of an additive graph code.Comment: Version 4 is almost exactly the same as the published version in Phys. Rev.

    Facial structures for various notions of positivity and applications to the theory of entanglement

    Full text link
    In this expository note, we explain facial structures for the convex cones consisting of positive linear maps, completely positive linear maps, decomposable positive linear maps between matrix algebras, respectively. These will be applied to study the notions of entangled edge states with positive partial transposes and optimality of entanglement witnesses.Comment: An expository note. Section 7 and Section 8 have been enlarge

    Nonbinary Codeword Stabilized Quantum Codes

    Full text link
    The codeword stabilized (CWS) quantum codes formalism presents a unifying approach to both additive and nonadditive quantum error-correcting codes (arXiv:0708.1021 [quant-ph]), but only for binary states. Here we generalize the CWS framework to the nonbinary case (of both prime and nonprime dimension) and map the search for nonbinary quantum codes to a corresponding search problem for classical nonbinary codes with specific error patterns. We show that while the additivity properties of nonbinary CWS codes are similar to the binary case, the structural properties of the nonbinary codes differ substantially from the binary case, even for prime dimensions. In particular, we identify specific structure patterns of stabilizer groups, based on which efficient constructions might be possible for codes that encode more dimensions than any stabilizer codes of the same length and distance; similar methods cannot be applied in the binary case. Understanding of these structural properties can help prune the search space and facilitate the identification of good nonbinary CWS codes.Comment: 7 pages, no figur

    Morphodynamics of a width-variable gravel bed stream: new insights on pool-riffle formation from physical experiments

    Get PDF
    Field observations, experiments, and numerical simulations suggest that pool-riffles along gravel bed mountain streams develop due to downstream variations of channel width. Where channels narrow, pools are observed, and at locations of widening, riffles occur. Based on previous work, we hypothesize that the bed profile is coupled to downstream width variations through momentum fluxes imparted to the channel surface, which scale with downstream changes of flow velocity. We address this hypothesis with flume experiments understood through scaling theory. Our experiments produce pool-riffle like structures across average Shields stresses t* that are a factor 1.5–2 above the threshold mobility condition of the experimental grain size distribution. Local topographic responses are coupled to channel width changes, which drive flows to accelerate or decelerate on average, for narrowing and widening, respectively. We develop theory which explains the topography-width-velocity coupling as a ratio of two reinforcing timescales. The first timescale captures the time necessary to do work to the channel bed. The second timescale characterizes the relative time magnitude of momentum transfer from the flowing fluid to the channel bed surface. Riffle-like structures develop where the work and momentum timescales are relatively large, and pools form where the two timescales are relatively small. We show that this result helps to explain local channel bed slopes along pool-riffles for five data sets representing experimental, numerical, and natural cases, which span 2 orders of magnitude of reach-averaged slope. Additional model testing is warranted.Peer ReviewedPostprint (published version

    Finite covers of random 3-manifolds

    Full text link
    A 3-manifold is Haken if it contains a topologically essential surface. The Virtual Haken Conjecture posits that every irreducible 3-manifold with infinite fundamental group has a finite cover which is Haken. In this paper, we study random 3-manifolds and their finite covers in an attempt to shed light on this difficult question. In particular, we consider random Heegaard splittings by gluing two handlebodies by the result of a random walk in the mapping class group of a surface. For this model of random 3-manifold, we are able to compute the probabilities that the resulting manifolds have finite covers of particular kinds. Our results contrast with the analogous probabilities for groups coming from random balanced presentations, giving quantitative theorems to the effect that 3-manifold groups have many more finite quotients than random groups. The next natural question is whether these covers have positive betti number. For abelian covers of a fixed type over 3-manifolds of Heegaard genus 2, we show that the probability of positive betti number is 0. In fact, many of these questions boil down to questions about the mapping class group. We are lead to consider the action of mapping class group of a surface S on the set of quotients pi_1(S) -> Q. If Q is a simple group, we show that if the genus of S is large, then this action is very mixing. In particular, the action factors through the alternating group of each orbit. This is analogous to Goldman's theorem that the action of the mapping class group on the SU(2) character variety is ergodic.Comment: 60 pages; v2: minor changes. v3: minor changes; final versio

    Efficient implementation of selective recoupling in heteronuclear spin systems using Hadamard matrices

    Get PDF
    We present an efficient scheme which couples any designated pair of spins in heteronuclear spin systems. The scheme is based on the existence of Hadamard matrices. For a system of nn spins with pairwise coupling, the scheme concatenates cncn intervals of system evolution and uses at most cn2c n^2 pulses where c1c \approx 1. Our results demonstrate that, in many systems, selective recoupling is possible with linear overhead, contrary to common speculation that exponential effort is always required.Comment: 7 pages, 4 figures, mypsfig2, revtex, submitted April 27, 199

    The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot

    Get PDF
    BACKGROUND: Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. METHODS: Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. RESULTS: Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. CONCLUSIONS: The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted
    corecore