80 research outputs found

    Comparative transcriptomic profiling of myxomatous mitral valve disease in the Cavalier King Charles Spaniel

    Get PDF
    BACKGROUND: Almost all elderly dogs develop myxomatous mitral valve disease by the end of their life, but the cavalier King Charles spaniel (CKCS) has a heightened susceptibility, frequently resulting in death at a young age and suggesting that there is a genetic component to the condition in this breed. Transcriptional profiling can reveal the impact of genetic variation through differences in gene expression levels. The aim of this study was to determine whether expression patterns were different in mitral valves showing myxomatous degeneration from CKCS dogs compared to valves from non-CKCS dogs. RESULTS: Gene expression patterns in three groups of canine valves resulted in distinct separation of normal valves, diseased valves from CKCS and diseased valves from other breeds; the latter were more similar to the normal valves than were the valves from CKCS. Gene expression patterns in diseased valves from CKCS dogs were quite different from those in the valves from other dogs, both affected and normal. Patterns in all diseased valves (from CKCS and other breeds) were also somewhat different from normal non-diseased samples. Analysis of differentially expressed genes showed enrichment in GO terms relating to cardiac development and function and to calcium signalling canonical pathway in the genes down-regulated in the diseased valves from CKCS, compared to normal valves and to diseased valves from other breeds. F2 (prothrombin) (CKCS diseased valves compared to normal) and MEF2C pathway activation (CKCS diseased valves compared to non-CKCS diseased valves) had the strongest association with the gene changes. A large number of genes that were differentially expressed in the CKCS diseased valves compared with normal valves and diseased valves from other breeds were associated with cardiomyocytes including CASQ2, TNNI3 and RYR2. CONCLUSION: Transcriptomic profiling identified gene expression changes in CKCS diseased valves that were not present in age and disease severity-matched non-CKCS valves. These genes are associated with cardiomyocytes, coagulation and extra-cellular matrix remodelling. Identification of genes that vary in the CKCS will allow exploration of genetic variation to understand the aetiology of the disease in this breed, and ultimately development of breeding strategies to eliminate this disease from the breed

    The Role of Transforming Growth Factor-Ī² Signaling in Myxomatous Mitral Valve Degeneration

    Get PDF
    Mitral valve prolapse (MVP) due to myxomatous degeneration is one of the most important chronic degenerative cardiovascular diseases in people and dogs. It is a common cause of heart failure leading to significant morbidity and mortality in both species. Human MVP is usually classified into primary or non-syndromic, including Barlowā€™s Disease (BD), fibro-elastic deficiency (FED) and Filamin-A mutation, and secondary or syndromic forms (typically familial), such as Marfan syndrome (MFS), Ehlers-Danlos syndrome, and Loeysā€“Dietz syndrome. Despite different etiologies the diseased valves share pathological features consistent with myxomatous degeneration. To reflect this common pathology the condition is often called myxomatous mitral valve degeneration (disease) (MMVD) and this term is universally used to describe the analogous condition in the dog. MMVD in both species is characterized by leaflet thickening and deformity, disorganized extracellular matrix, increased transformation of the quiescent valve interstitial cell (qVICs) to an activated state (aVICs), also known as activated myofibroblasts. Significant alterations in these cellular activities contribute to the initiation and progression of MMVD due to the increased expression of transforming growth factor-Ī² (TGF-Ī²) superfamily cytokines and the dysregulation of the TGF-Ī² signaling pathways. Further understanding the molecular mechanisms of MMVD is needed to identify pharmacological manipulation strategies of the signaling pathway that might regulate VIC differentiation and so control the disease onset and development. This review briefly summarizes current understanding of the histopathology, cellular activities, molecular mechanisms and pathogenesis of MMVD in dogs and humans, and in more detail reviews the evidence for the role of TGF-Ī²

    Metformin ameliorates valve interstitial cell calcification by promoting autophagic flux.

    Get PDF
    Calcific aortic valve disease (CAVD) is the most common heart disease of the developed world. It has previously been established that metformin administration reduces arterial calcification via autophagy; however, whether metformin directly regulates CAVD has yet to be elucidated. In the present study we investigated whether metformin alleviates valvular calcification through the autophagy-mediated recycling of Runx2.Calcification was reduced in rat valve interstitial cells (RVICs) by metformin treatment (0.5mM - 1.5mM) (P&lt;0.01), with a marked decrease in Runx2 protein expression compared to control cells (P&lt;0.05). Additionally, upregulated expression of Atg3 and Atg7 (key proteins required for autophagosome formation), was observed following metformin treatment (1mM). Blocking autophagic flux using Bafilomycin-A1 revealed colocalisation of Runx2 with LC3 puncta in metformin treated RVICs (P&lt;0.001). Comparable Runx2 accumulation was seen in LC3 positive autolysosomes present within cells that had been treated with both metformin and hydroxychloroquine in combination (P&lt;0.001). Mechanistic studies employing three-way co-immunoprecipitation with Runx2, p62 and LC3 suggested that Runx2 binds to LC3-II upon metformin treatment in VICs.Together these studies suggest that the utilisation of metformin may represent a novel strategy for the treatment of CAVD.<br/

    Mechanisms and Clinical Consequences of Vascular Calcification

    Get PDF
    Vascular calcification has severe clinical consequences and is considered an accurate predictor of future adverse cardiovascular events, including myocardial infarction and stroke. Previously vascular calcification was thought to be a passive process which involved the deposition of calcium and phosphate in arteries and cardiac valves. However, recent studies have shown that vascular calcification is a highly regulated, cell-mediated process similar to bone formation. In this article, we outline the current understanding of key mechanisms governing vascular calcification and highlight the clinical consequences. By understanding better the molecular pathways and genetic circuitry responsible for the pathological mineralization process novel drug targets may be identified and exploited to combat and reduce the detrimental effects of vascular calcification on human health

    Differing calcification processes in cultured vascular smooth muscle cells and osteoblasts

    Get PDF
    Ā© 2019 Published by Elsevier Inc.Arterial medial calcification (AMC) is the deposition of calcium phosphate mineral, often as hydroxyapatite, inthe medial layer of the arteries. AMC shares some similarities to skeletal mineralisation and has been associatedwith the transdifferentiation of vascular smooth muscle cells (VSMCs) towards an osteoblast-like phenotype. Thisstudy used primary mouse VSMCs and calvarial osteoblasts to directly compare the established and widely usedin vitromodels of AMC and bone formation. Significant differences were identified between osteoblasts andcalcifying VSMCs. First, osteoblasts formed large mineralised bone nodules that were associated with widespreaddeposition of an extracellular collagenous matrix. In contrast, VSMCs formed small discrete regions of calcifi-cation that were not associated with collagen deposition and did not resemble bone. Second, calcifying VSMCsdisplayed a progressive reduction in cell viability over time (ā‰¤7-fold), with a 50% increase in apoptosis,whereas osteoblast and control VSMCs viability remained unchanged. Third, osteoblasts expressed high levels ofalkaline phosphatase (TNAP) activity and TNAP inhibition reduced bone formation by to 90%. TNAP activity incalcifying VSMCs wasāˆ¼100-fold lower than that of bone-forming osteoblasts and cultures treated withĪ²-gly-cerophosphate, a TNAP substrate, did not calcify. Furthermore, TNAP inhibition had no effect on VSMC calci-fication. Although, VSMC calcification was associated with increased mRNA expression of osteoblast-relatedgenes (e.g. Runx2, osterix, osteocalcin, osteopontin), the relative expression of these genes was up to 40-foldlower in calcifying VSMCs versus bone-forming osteoblasts. In summary, calcifying VSMCsin vitrodisplay somelimited osteoblast-like characteristics but also differ in several key respects: 1) their inability to form collagen-containing bone; 2) their lack of reliance on TNAP to promote mineral deposition; and, 3) the deleterious effectof calcification on their viability.Peer reviewedFinal Published versio
    • ā€¦
    corecore