10 research outputs found

    Accelerating visible-light photoredox catalysis in continuous-flow reactors

    No full text
    This chapter gives an overview of the most important examples of visible-light photoredox catalysis in continuous-flow reactors based on the heterogeneity of the reaction mixture (homogeneous, gas-liquid, and solid-liquid). Photocatalysis in a homogeneous single phase can be straightforwardly converted to a continuous-flow protocol. In a continuous-flow system, the mixing efficiency is well controlled by the large and well-defined surface-to-volume ratios and the reaction times are defined by the flow rates. The efficient generation of reactive radical species in a gas-liquid continuous-flow system was demonstrated by Noel et al. for the trifluoromethylation of five-membered heterocycles. For gas-liquid reactions, it is important to maximize the interfacial area to avoid mass transfer limitations. Immobilization of photocatalysts in continuous-flow reactors provides a number of advantages with regard to catalyst recuperation and reuse. Transferring the chemistry to continuous flow resulted in a substantial acceleration of photocatalytic oxidation protocol

    Reactive intermediates for interactome mapping

    No full text
    The interactions of biomolecules underpin all cellular processes, and the understanding of their dynamic interplay can lead to significant advances in the treatment of disease through the identification of novel therapeutic strategies. Protein-protein interactions (PPIs) in particular play a vital role within this arena, providing the basis for the majority of cellular signalling pathways. Despite their great importance, the elucidation of weak or transient PPIs that cannot be identified by immunoprecipitation remains a significant challenge, particularly in a disease relevant cellular environment. Recent approaches towards this goal have utilized the in situ generation of high energy intermediates that cross-link with neighboring proteins, providing a snapshot of the biomolecular makeup of the local area or microenvironment, termed the interactome. In this tutorial review, we discuss these reactive intermediates, how they are generated, and the impact they have had on the discovery of new biology. Broadly, we believe this strategy has the potential to significantly accelerate our understanding of PPIs and how they affect cellular physiology

    Native functionality in triple catalytic cross-coupling: sp3 C-H bonds as latent nucleophiles

    No full text
    The use of sp3 C–H bonds—which are ubiquitous in organic molecules—as latent nucleophile equivalents for transition metal–catalyzed cross-coupling reactions has the potential to substantially streamline synthetic efforts in organic chemistry while bypassing substrate activation steps. Through the combination of photoredox-mediated hydrogen atom transfer (HAT) and nickel catalysis, we have developed a highly selective and general C–H arylation protocol that activates a wide array of C–H bonds as native functional handles for cross-coupling. This mild approach takes advantage of a tunable HAT catalyst that exhibits predictable reactivity patterns based on enthalpic and bond polarity considerations to selectively functionalize α-amino and α-oxy sp3 C–H bonds in both cyclic and acyclic systems
    corecore