11 research outputs found
Recommended from our members
The Inner-Shelf Dynamics Experiment
17 USC 105 interim-entered record; under review.The article of record as published may be found at http://dx.doi.org/10.1175/BAMS-D-19-0281.1The inner shelf, the transition zone between the surfzone and the midshelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from SeptemberâOctober 2017, conducted from the midshelf, through the inner shelf, and into the surfzone near Point Sal, California. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves, and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the midshelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.U.S. Office of Naval Research (ONR)ONR Departmental Research Initiative (DRI)Inner-Shelf Dynamics Experiment (ISDE
Recommended from our members
Coastal Land Air Sea Interaction: âtheâ beach towers
2016 AGU Fall MeetingAs part of the Coastal Land Air Sea Interaction (CLASI) experiment, an alongshore array of 6-m high towers instrumented with ultrasonic 3D anemometers and temperature-relative humidity sensors were deployed at five sandy beaches near the high-tide line in Monterey Bay, CA, in May-June 2016. A cross-shore array of towers was also deployed from within the active surfzone to the toe of the dune at one beach. In addition, waves and ocean temperature were obtained along the 10m isobath for each beach. The dissipative surfzone was O(80m) wide. The wave energy varies among the beaches owing to sheltering and refraction by the Monterey Canyon and headlands. The tides are semi-diurnal mixed, meso-tidal with a maximum tidal range of 2m. This results in a variable beach width from the tower to the tidal line. Footprint analysis for estimating the source region for the turbulent momentum fluxes, suggests that the observations represent three scenarios described as primarily ocean, mixed beach and ocean, and primarily beach. The direct-estimate of the atmospheric stability by the sonic anemometer suggest that all of the beaches are mostly unstable except for a few occurrences in the evening during low wind conditions. The onshore neutral drag coefficient (Cd) estimated at 10m heights is 3-5 times larger than open ocean estimates. Minimal variability was found in Cd based on the footprint analysis. Beach- specific spatial variability in Cd was found related to atmospheric stability and wave energy
Numerical Study on the Effect of Air-Sea-Land Interaction on the Atmospheric Boundary Layer in Coastal Area
The article of record as published may be found at http://www.mdpi.com/2073-4433/9/2/51We have performed large-eddy simulations (LES) to study the effect of complex land topography on the atmospheric boundary layer (ABL) in coastal areas. The areas under investigation are located at three beaches in Monterey Bay, CA, USA. The sharp-interface immersed boundary method is employed to resolve the land topography down to grid scale. We have considered real-time and what-if cases. In the real-time cases, measurement data and realistic land topographies are directly incorporated. In the what-if cases, the effects of different scenarios of wind speed, wind direction, and terrain pattern on the momentum flux at the beach are studied. The LES results are compared with simulations using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) and field measurement data. We find that the land topography imposes a critical influence on the ABL in the coastal area. The momentum fluxes obtained from our LES agree with measurement data. Our results indicate the importance of capturing the effects of land topographies in simulations
Challenges for Mesoscale Numerical Models in the Littoral Environment
100th American Meteorological Society Annual MeetingHigh-resolution numerical weather prediction (NWP) in the littoral zone remains an outstanding challenge due to the complexity of the surface physical and thermodynamic properties, coastline representation and turbulence quantification. Prevailing approaches to surface flux parameterization in mesoscale NWP are susceptible to error in the littoral zone in part due to the surface heterogeneity and the impact of wind direction on the surface fluxes. The Coastal Land-Air-Sea Interaction (CLASI) project conducted a pilot field campaign during two weeks in summer 2016 around Monterey Bay, California, USA, to collect in-situ and remote measurements of meteorological and oceanographic quantities on-shore, off-shore and slightly inland to capture the cross-shore and along-shore gradient of key atmospheric fields and turbulent fluxes in a variety of conditions. The region was modeled using mesoscale NWP with the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPSÂź) at horizontal resolutions as fine as 333 m. Whereas COAMPS performed well with predictions of near surface scalar and momentum fields verified by surface mesonet stations 4 to 5 km in-land, the pilot project revealed several sources of error in mesoscale NWP along the coastline. Such errors include a strong positive model bias of surface momentum flux and a lack of sensitivity of surface momentum flux to wind direction, a result expected since surface flux parameterizations are designed for homogeneous conditions. This presentation will show results of new high-resolution NWP model studies performed in preparation for an impending more extensive CLASI field campaign planned for summer 2020 in Monterey Bay. The goal of this latest modeling work is to identify the optimal locations and other constraints for observations needed as part of the larger field campaign objective to develop and validate new NWP model surface flux parameterizations. The COAMPS runs will be compared against large-eddy simulation of Monterey Bay littoral environments to validate NWP surface flux parameterizations in the littoral zone and better understand NWP model sensitivity. The presentation will also outline planned CLASI field campaign efforts for 2020
Numerical Study on the Effect of AirâSeaâLand Interaction on the Atmospheric Boundary Layer in Coastal Area
We have performed large-eddy simulations (LES) to study the effect of complex land topography on the atmospheric boundary layer (ABL) in coastal areas. The areas under investigation are located at three beaches in Monterey Bay, CA, USA. The sharp-interface immersed boundary method is employed to resolve the land topography down to grid scale. We have considered real-time and what-if cases. In the real-time cases, measurement data and realistic land topographies are directly incorporated. In the what-if cases, the effects of different scenarios of wind speed, wind direction, and terrain pattern on the momentum flux at the beach are studied. The LES results are compared with simulations using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) and field measurement data. We find that the land topography imposes a critical influence on the ABL in the coastal area. The momentum fluxes obtained from our LES agree with measurement data. Our results indicate the importance of capturing the effects of land topographies in simulations
Numerical Study on the Effect of AirâSeaâLand Interaction on the Atmospheric Boundary Layer in Coastal Area
We have performed large-eddy simulations (LES) to study the effect of complex land topography on the atmospheric boundary layer (ABL) in coastal areas. The areas under investigation are located at three beaches in Monterey Bay, CA, USA. The sharp-interface immersed boundary method is employed to resolve the land topography down to grid scale. We have considered real-time and what-if cases. In the real-time cases, measurement data and realistic land topographies are directly incorporated. In the what-if cases, the effects of different scenarios of wind speed, wind direction, and terrain pattern on the momentum flux at the beach are studied. The LES results are compared with simulations using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) and field measurement data. We find that the land topography imposes a critical influence on the ABL in the coastal area. The momentum fluxes obtained from our LES agree with measurement data. Our results indicate the importance of capturing the effects of land topographies in simulations
Recommended from our members
CLASI: Coordinating Innovative Observations and Modeling to Improve Coastal Environmental Prediction Systems
Abstract The Coastal LandâAirâSea Interaction (CLASI) project aims to develop new âcoast-awareâ atmospheric boundary and surface layer parameterizations that represent the complex landâsea transition region through innovative observational and numerical modeling studies. The CLASI field effort involves an extensive array of more than 40 land- and ocean-based moorings and towers deployed within varying coastal domains, including sandy, rocky, urban, and mountainous shorelines. Eight AirâSea Interaction Spar (ASIS) buoys are positioned within the coastal and nearshore zone, the largest and most concentrated deployment of this unique, established measurement platform. Additionally, an array of novel nearshore buoys and a network of land-based surface flux towers are complemented by spatial sampling from aircraft, shore-based radars, drones, and satellites. CLASI also incorporates unique electromagnetic wave (EM) propagation measurements using a coherent array, drone receiver, and a marine radar to understand evaporation duct variability in the coastal zone. The goal of CLASI is to provide a rich dataset for validation of coupled, data assimilating large-eddy simulations (LES) and the Navyâs Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). CLASI observes four distinct coastal regimes within Monterey Bay, California (MB). By coordinating observations with COAMPS and LES simulations, the CLASI efforts will result in enhanced understanding of coastal physical processes and their representation in numerical weather prediction (NWP) models tailored to the coastal transition region. CLASI will also render a rich dataset for model evaluation and testing in support of future improvements to operational forecast models
Recommended from our members
On the nature of the frontal zone of the Choctawhatchee Bay plume in the Gulf of Mexico
River plumes often feature turbulent processes in the frontal zone and interfacial region at base of the plume, which ultimately impact spreading and mixing rates with the ambient coastal ocean. The degree to which these processes govern overall plume mixing is yet to be quantified with microstructure observations. A field campaign was conducted in a river plume in the northeast Gulf of Mexico in December 2013, in order to assess mixing processes that could potentially impact transport and dispersion of surface material near coastal regions. Current velocity, density, and Turbulent Kinetic Energy Values, Δ, were obtained using an Acoustic Doppler Current Profiler (ADCP), a Conductivity Temperature Depth (CTD) profiler, a Vertical Microstructure Profiler (VMP), and two Acoustic Doppler Velocimeters (ADVs). The frontal region contained Δ values on the order of 10â5 m2 sâ3, which were markedly larger than in the ambient water beneath (O 10â9 m2 sâ3). An energetic wake of moderate Δ values (O 10â6 m2 sâ3) was observed trailing the frontal edge. The interfacial region of an interior section of the plume featured opposing horizontal velocities and a Δ value on the order of 10â6 m2 sâ3. A simplified mixing budget was used under significant assumptions to compare contributions from wind, tides, and frontal regions of the plume. The results from this order of magnitude analysis indicated that frontal processes (59%) dominated in overall mixing. This emphasizes the importance of adequate parameterization of river plume frontal processes in coastal predictive models
Recommended from our members
Evaluating Atmospheric Surface Layer Flux Parameterization within the Coastal Regime
Abstract Traditional atmospheric surface layer theory assumes homogeneous surface conditions. Regardless, nearly all surface layer parameterization schemes employed within numerical weather prediction models utilize the same techniques within highly heterogeneous coastal regimes as for homogeneous environments. We compare predicted surface weather and fluxes of momentum, heat, and moistureâfocusing mainly on momentumâfrom regional simulations using the Coupled OceanâAtmosphere Mesoscale Prediction System (COAMPS) atmospheric model to observations collected from offshore buoys, inland flux towers, and radiosonde profiles during the Coastal Land-Air-Sea Interaction (CLASI) project throughout the summer of 2021 around Monterey Bay, California. Results reveal that modeled cross-coastal surface flux gradients are spuriously discontinuous, leading to systematically overestimated fluxes and weak winds inland of the coastline during onshore flow periods. Additionally, contrary to observations, modeled surface exchange coefficients are insensitive to wind direction on both sides of the coast, which degrades predictive skill downstream from the coastline. Over the central bay, prediction degrades when near-surface wind directions deviate from the prevailing flow direction as the parameterized stressâwind relationship fails during these cases. Predictive skill over the bay is therefore linked to variations in wind direction. Offshore of the geographically complex peninsula, systematic biases are less clear; however, bifurcations in drag coefficients based on wind direction were measured here as well. Last, increasing the horizontal grid spacing from 333 m to 3 km does not significantly affect surface layer prediction. This work highlights the need to reevaluate surface layer parameterization methods for modeling within coastal regions. Significance Statement Understanding surface layer weather is critical for many purposes, such as infrastructure design and weather forecasting. Within the context of numerical modeling and weather prediction, skillful forecasts of surface winds and temperature rely on accurate portrayal of the surface layer. By comparing observations collected during the Coastal Land-Air-Sea Interaction field program to numerical model solutions, we show that prediction of the surface layer fluxes of momentum, heat, and moisture break down near the coastline, which leads to biases in the predicted surface layer weather both inland and over the water. As surface layer parameterization methods across nearly all numerical models are rooted in the same practices, our results call into question the use of traditional methods near the coastline