168 research outputs found

    Optimality of mutation and selection in germinal centers

    Get PDF
    The population dynamics theory of B cells in a typical germinal center could play an important role in revealing how affinity maturation is achieved. However, the existing models encountered some conflicts with experiments. To resolve these conflicts, we present a coarse-grained model to calculate the B cell population development in affinity maturation, which allows a comprehensive analysis of its parameter space to look for optimal values of mutation rate, selection strength, and initial antibody-antigen binding level that maximize the affinity improvement. With these optimized parameters, the model is compatible with the experimental observations such as the ~100-fold affinity improvements, the number of mutations, the hypermutation rate, and the "all or none" phenomenon. Moreover, we study the reasons behind the optimal parameters. The optimal mutation rate, in agreement with the hypermutation rate in vivo, results from a tradeoff between accumulating enough beneficial mutations and avoiding too many deleterious or lethal mutations. The optimal selection strength evolves as a balance between the need for affinity improvement and the requirement to pass the population bottleneck. These findings point to the conclusion that germinal centers have been optimized by evolution to generate strong affinity antibodies effectively and rapidly. In addition, we study the enhancement of affinity improvement due to B cell migration between germinal centers. These results could enhance our understandings to the functions of germinal centers.Comment: 5 figures in main text, and 4 figures in Supplementary Informatio

    Neutrophilsβ€”the unexpected helpers of B‐cell activation

    Full text link
    A specific subpopulation of neutrophils, termed N(BH), has been shown recently to provide help for the differentiation and function of B cells and plasma cells. These novel findings are put in the context of our current understanding of B-cell help

    Somatic hypermutation and affinity maturation analysis using the 4-hydroxy-3-nitrophenyl-acetyl (NP) system

    Get PDF
    Somatic hypermutation of immunoglobulin variable region (IgV) genes and affinity maturation of the antibody response are the hallmarks of the germinal center (GC) reaction in T cell-dependent immune responses. Determining the consequences of the experimental manipulation of the GC response on somatic hypermutation and affinity maturation requires the availability of a system that allows measuring these parameters. Immunization of mice of the C57/Bl6 genetic background with the hapten 4-hydroxy-3-nitrophenyl-acetyl (NP) coupled to a carrier protein leads to the predominant usage of one particular IgV heavy chain gene segment, V186.2, among the responding B cells. Moreover, a specific somatic mutation in codon 33 of V186.2 that leads to a tryptophan to leucine amino acid exchange increases the affinity of the corresponding antibody by ~10-fold, thus representing a molecular marker for affinity maturation. In addition, due to the simplicity of the antigen and the virtual absence of NP-specific plasma cells prior to immunization, NP-based immunizations represent ideal tools to quantify the plasma cell response by measuring NP-specific antisera by ELISA and the generation of NP-specific plasma cells by ELISPOT analysis. We here describe approaches to (1) measure the anti-NP plasma cell response by ELISA and ELISPOT analysis, and to (2) amplify and sequence V186.2 rearrangements from GC B cells and plasma cells to determine the level of somatic hypermutation and the extent of affinity maturation in the anti-NP response

    Germinal center B cells recognize antigen through a specialized immune synapse architecture

    No full text
    B cell activation is regulated by B cell antigen receptor (BCR) signaling and antigen internalization in immune synapses. Using large-scale imaging across B cell subsets, we show that in contrast to naive and memory B cells, which gathered antigen towards the synapse center before internalization, germinal center (GC) B cells extracted antigen by a distinct pathway using small peripheral clusters. Both naive and GC B cell synapses required proximal BCR signaling, but GC cells signaled less through the protein kinase C-Ξ² (PKC-Ξ²)–NF-ΞΊB pathway and produced stronger tugging forces on the BCR, thereby more stringently regulating antigen binding. Consequently, GC B cells extracted antigen with better affinity discrimination than naive B cells, suggesting that specialized biomechanical patterns in B cell synapses regulate T-cell dependent selection of high-affinity B cells in GCs

    Incunabular Immunological Events in Prion Trafficking

    Get PDF
    While prions probably interact with the innate immune system immediately following infection, little is known about this initial confrontation. Here we investigated incunabular events in lymphotropic and intranodal prion trafficking by following highly enriched, fluorescent prions from infection sites to draining lymph nodes. We detected biphasic lymphotropic transport of prions from the initial entry site upon peripheral prion inoculation. Prions arrived in draining lymph nodes cell autonomously within two hours of intraperitoneal administration. Monocytes and dendritic cells (DCs) required Complement for optimal prion delivery to lymph nodes hours later in a second wave of prion trafficking. B cells constituted the majority of prion-bearing cells in the mediastinal lymph node by six hours, indicating intranodal prion reception from resident DCs or subcapsulary sinus macrophages or directly from follicular conduits. These data reveal novel, cell autonomous prion lymphotropism, and a prominent role for B cells in intranodal prion movement

    Enhancement of myeloma development mediated though myeloma cell-Th2 cell interactions after microbial antigen presentation by myeloma cells and DCs

    Get PDF
    Microbial agents are regarded as a potential cause of tumors, but their direct effects on tumors, such as myeloma, are not well studied. Our studies demonstrated that expression of HLA-DR and CD40 on the myeloma cell membrane surface is upregulated by interferon-Ξ³ and/or microbial antigens (Ags). Unlike prior studies, our study showed that Th2 cells cannot promote myeloma growth directly. However, Bacillus Calmette–Guerin Vaccine (BCGV)-specific Th2 cells stimulated by BCGV-loaded dendritic cells (DCs) promoted myeloma clonogenicity directly when the myeloma cells expressed major histocompatibility complex Class-II molecules (MHC-II) and took up BCGV Ag. B-cell lymphoma 6 (Bcl-6) protein expression and the proportion of HLA-DR+ or CD40+ cells were higher in colonies of Th2 cell-stimulated myeloma cells. Furthermore, anti-HLA-DR or neutralizing CD40 antibody could prevent this increase in Bcl-6 expression and colony number. These results indicate that microbes and microbial Ag-specific Th2 cells may directly impact the biology of myeloma and contribute to tumor progression. Activation may be limited to MHC-II+ myeloma cells that retain B cell and stem cell characteristics. Taken together, our data suggest that factors involved in microbial Ag presentation, such as DCs, Th2 cells and so on, are potential targets for myeloma therapeutic intervention

    CX3CR1 Is Expressed by Human B Lymphocytes and Meditates CX3CL1 Driven Chemotaxis of Tonsil Centrocytes

    Get PDF
    Background: Fractalkine/CX(3)CL1, a surface chemokine, binds to CX(3)CR1 expressed by different lymphocyte subsets. Since CX(3)CL1 has been detected in the germinal centres of secondary lymphoid tissue, in this study we have investigated CX(3)CR1 expression and function in human naive, germinal centre and memory B cells isolated from tonsil or peripheral blood.Methodology/Principal Findings: We demonstrate unambiguously that highly purified human B cells from tonsil and peripheral blood expressed CX(3)CR1 at mRNA and protein levels as assessed by quantitative PCR, flow cytometry and competition binding assays. In particular, naive, germinal centre and memory B cells expressed CX(3)CR1 but only germinal centre B cells were attracted by soluble CX(3)CL1 in a transwell assay. CX(3)CL1 signalling in germinal centre B cells involved PI3K, Erk1/2, p38, and Src phosphorylation, as assessed by Western blot experiments. CX(3)CR1(+) germinal centre B cells were devoid of centroblasts and enriched for centrocytes that migrated to soluble CX(3)CL1. ELISA assay showed that soluble CX(3)CL1 was secreted constitutively by follicular dendritic cells and T follicular helper cells, two cell populations homing in the germinal centre light zone as centrocytes. At variance with that observed in humans, soluble CX(3)CL1 did not attract spleen B cells from wild type mice. OVA immunized CX(3)CR1-/- or CX(3)CL1-/- mice showed significantly decreased specific IgG production compared to wild type mice.Conclusion/Significance: We propose a model whereby human follicular dendritic cells and T follicular helper cells release in the light zone of germinal centre soluble CX(3)CL1 that attracts centrocytes. The functional implications of these results warrant further investigation

    Maternal Genome-Wide DNA Methylation Patterns and Congenital Heart Defects

    Get PDF
    The majority of congenital heart defects (CHDs) are thought to result from the interaction between multiple genetic, epigenetic, environmental, and lifestyle factors. Epigenetic mechanisms are attractive targets in the study of complex diseases because they may be altered by environmental factors and dietary interventions. We conducted a population based, case-control study of genome-wide maternal DNA methylation to determine if alterations in gene-specific methylation were associated with CHDs. Using the Illumina Infinium Human Methylation27 BeadChip, we assessed maternal gene-specific methylation in over 27,000 CpG sites from DNA isolated from peripheral blood lymphocytes. Our study sample included 180 mothers with non-syndromic CHD-affected pregnancies (cases) and 187 mothers with unaffected pregnancies (controls). Using a multi-factorial statistical model, we observed differential methylation between cases and controls at multiple CpG sites, although no CpG site reached the most stringent level of genome-wide statistical significance. The majority of differentially methylated CpG sites were hypermethylated in cases and located within CpG islands. Gene Set Enrichment Analysis (GSEA) revealed that the genes of interest were enriched in multiple biological processes involved in fetal development. Associations with canonical pathways previously shown to be involved in fetal organogenesis were also observed. We present preliminary evidence that alterations in maternal DNA methylation may be associated with CHDs. Our results suggest that further studies involving maternal epigenetic patterns and CHDs are warranted. Multiple candidate processes and pathways for future study have been identified

    Distinct Kinetics of Memory B-Cell and Plasma-Cell Responses in Peripheral Blood Following a Blood-Stage Plasmodium chabaudi Infection in Mice

    Get PDF
    B cell and plasma cell responses take place in lymphoid organs, but because of the inaccessibility of these organs, analyses of human responses are largely performed using peripheral blood mononuclear cells (PBMC). To determine whether PBMC are a useful source of memory B cells and plasma cells in malaria, and whether they reflect Plasmodium-specific B cell responses in spleen or bone marrow, we have investigated these components of the humoral response in PBMC using a model of Plasmodium chabaudi blood-stage infections in C57BL/6 mice. We detected memory B cells, defined as isotype-switched IgDβˆ’ IgMβˆ’ CD19+ B cells, and low numbers of Plasmodium chabaudi Merozoite Surface Protein-1 (MSP1)-specific memory B cells, in PBMC at all time points sampled for up to 90 days following primary or secondary infection. By contrast, we only detected CD138+ plasma cells and MSP1-specific antibody-secreting cells within a narrow time frame following primary (days 10 to 25) or secondary (day 10) infection. CD138+ plasma cells in PBMC at these times expressed CD19, B220 and MHC class II, suggesting that they were not dislodged bone-marrow long-lived plasma cells, but newly differentiated migratory plasmablasts migrating to the bone marrow; thus reflective of an ongoing or developing immune response. Our data indicates that PBMC can be a useful source for malaria-specific memory B cells and plasma cells, but extrapolation of the results to human malaria infections suggests that timing of sampling, particularly for plasma cells, may be critical. Studies should therefore include multiple sampling points, and at times of infection/immunisation when the B-cell phenotypes of interest are likely to be found in peripheral blood
    • …
    corecore