867 research outputs found

    Investigating the effect of a stress-based uniaxial anisotropy on the magnetic behaviour of La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> elements

    Get PDF
    We investigate the interplay between shape anisotropy and a stress-based uniaxial anisotropy on the magnetic domain structure of La&lt;sub&gt;0.7&lt;/sub&gt;Sr&lt;sub&gt;0.3&lt;/sub&gt;MnO&lt;sub&gt;3&lt;/sub&gt; nanoelements as a function of aspect ratio, using micromagnetic simulations. We show that a direct competition between the anisotropies gives rise to high energy multi-domain flux closure configurations, whilst an alignment of the anisotropies can modify the effective element dimensions and act to stabilise a single domain configuration. Our results demonstrate the ability to control the spin state of La&lt;sub&gt;0.7&lt;/sub&gt;Sr&lt;sub&gt;0.3&lt;/sub&gt;MnO&lt;sub&gt;3&lt;/sub&gt; elements in addition to tailoring the domain wall width by controlling the anisotropy of the material, which is key for spintronic applications that require a high spin-polarization and stable magnetic configurations

    Simulation and analysis of solenoidal ion sources

    Get PDF
    We present a detailed analysis and simulation of solenoidal, magnetically confined electron bombardment ion sources, aimed at molecular beam detection. The aim is to achieve high efficiency for singly ionized species while minimizing multiple ionization. Electron space charge plays a major role and we apply combined ray tracing and finite element simulations to determine the properties of a realistic geometry. The factors controlling electron injection and ion extraction are discussed. The results from simulations are benchmarked against experimental measurements on a prototype source

    Engineering magnetic domain-wall structure in permalloy nanowires

    Get PDF
    Using Lorentz transmission electron microscopy we investigate the behavior of domain walls pinned at non-topographic defects in Cr(3 nm)/Permalloy(10 nm)/Cr(5 nm) nanowires of width 500 nm. The pinning sites consist of linear defects where magnetic properties are modified by a Ga ion probe with diameter ~ 10 nm using a focused ion beam microscope. We study the detailed change of the modified region (which is on the scale of the focused ion spot) using electron energy loss spectroscopy and differential phase contrast imaging on an aberration (Cs) corrected scanning transmission electron microscope. The signal variation observed indicates that the region modified by the irradiation corresponds to ~ 40-50 nm despite the ion probe size of only 10 nm. Employing the Fresnel mode of Lorentz transmission electron microscopy, we show that it is possible to control the domain wall structure and its depinning strength not only via the irradiation dose but also the line orientation.Comment: Accepted for publication in Physical Review Applie

    Texture, twinning and metastable "tetragonal" phase in ultrathin films of HfO<sub>2</sub> on a Si substrate

    Get PDF
    Thin HfO&lt;sub&gt;2&lt;/sub&gt; films grown on the lightly oxidised surface of (100) Si wafers have been examined using dark-field transmission electron microscopy and selected area electron diffraction in plan view. The polycrystalline film has a grain size of the order of 100 nm and many of the grains show evidence of twinning on (110) and (001) planes. Diffraction studies showed that the film had a strong [110] out-of-plane texture, and that a tiny volume fraction of a metastable (possibly tetragonal) phase was retained. The reasons for the texture, twinning and the retention of the metastable phase are discussed

    Charge redistribution in the formation of one-dimensional lithium wires on Cu(001)

    Get PDF
    We describe the formation of one-dimensional lithium wires on a Cu(001) substrate, providing an atomic-scale description of the onset of metallization in this prototypical adsorption system. A combination of helium atom scattering and density-functional theory reveals pronounced changes in the electronic charge distribution on the formation of the c(5√2×√2)R45° Li/Cu(001) structure, as in-plane bonds are created. Charge donation from Li-substrate bonds is found to facilitate the formation of stable, bonded, and depolarized chains of Li adatoms that coexist with an interleaved phase of independent adatoms. The resultant overlayer has a commensurate charge distribution and lattice modulations but differs fundamentally from structurally similar charge-density wave systems

    An ellipsoidal mirror for focusing neutral atomic and molecular beams

    Get PDF
    Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) ÎŒm×(31.4±0.8) ÎŒm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope

    High resolution structural characterisation of laser-induced defect clusters inside diamond

    Get PDF
    Laser writing with ultrashort pulses provides a potential route for the manufacture of three-dimensional wires, waveguides and defects within diamond. We present a transmission electron microscopy (TEM) study of the intrinsic structure of the laser modifications and reveal a complex distribution of defects. Electron energy loss spectroscopy (EELS) indicates that the majority of the irradiated region remains as sp3sp^3 bonded diamond. Electrically-conductive paths are attributed to the formation of multiple nano-scale, sp2sp^2-bonded graphitic wires and a network of strain-relieving micro-cracks

    Linewidths in bound state resonances for helium scattering from Si(111)-(1x1)H

    Get PDF
    Helium-3 spin-echo measurements of resonant scattering from the Si(111)–(1 × 1)H surface, in the energy range 4–14 meV, are presented. The measurements have high energy resolution yet they reveal bound state resonance features with uniformly broad linewidths. We show that exact quantum mechanical calculations of the elastic scattering, using the existing potential for the helium/Si(111)–(1 × 1)H interaction, cannot reproduce the linewidths seen in the experiment. Further calculations rule out inelastic and other mechanisms that might give rise to losses from the elastic scattering channels. We show that corrugation in the attractive part of the atom–surface potential is the most likely origin of the experimental lineshapes

    Addition of Caffeine to a Carbohydrate Feeding Strategy Prior to Intermittent Exercise

    Get PDF
    The ergogenic effect of caffeine is well established, although no investigations providing a high carbohydrate feeding strategy (pre-exercise meal=2 g/kg BM) co-ingested with caffeine exist for soccer. This investigation examines the effect of caffeine in addition to a pre-exercise carbohydrate meal and drink mid-way through a soccer simulation. Eight recreational soccer players completed an 85-minute soccer simulation followed by an exercise capacity test (Yo-yo Intermittent Endurance test level 2) on two occasions. Prior to exercise participants consumed a high carbohydrate meal, with placebo or 5 mg/kg BM-1 caffeine. No significant performance effect was identified (p=0.099) despite a 12.8% (109 m) improvement in exercise capacity following caffeine. Rates of carbohydrate and fat oxidation did not differ between conditions and nor were differences apparent for plasma glucose, fatty acids, glycerol, ÎČ-hydroxybutyrate (p>0.05). However, an increase in lactate was observed for caffeine (p=0.039). A significant condition effect on rating of perceived exertion was identified (p<0.001), with the overall mean for the protocol lowered to 11.7±0.9 au for caffeine compared to 12.8±1.3 au. Caffeine supplementation with a carbohydrate feeding strategy failed to affect metabolic and metabolite responses, although reductions in perception of exercise were observed. While a 12.8% increase in exercise capacity was noted the findings were not significant, possibly due to the small sample size

    Medipix3 Demonstration and understanding of near ideal detector performance for 60 & 80 keV electrons

    Full text link
    In our article we report first quantitative measurements of imaging performance for the current generation of hybrid pixel detector, Medipix3, as direct electron detector. Utilising beam energies of 60 & 80 keV, measurements of modulation transfer function (MTF) and detective quantum efficiency (DQE) have revealed that, in single pixel mode (SPM), energy threshold values can be chosen to maximize either the MTF or DQE, obtaining values near to, or even exceeding, those for an ideal detector. We have demonstrated that the Medipix3 charge summing mode (CSM) can deliver simultaneous, near ideal values of both MTF and DQE. To understand direct detection performance further we have characterized the detector response to single electron events, building an empirical model which can predict detector MTF and DQE performance based on energy threshold. Exemplifying our findings we demonstrate the Medipix3 imaging performance, recording a fully exposed electron diffraction pattern at 24-bit depth and images in SPM and CSM modes. Taken together our findings highlight that for transmission electron microscopy performed at low energies (energies <100 keV) thick hybrid pixel detectors provide an advantageous and alternative architecture for direct electron imagin
    • 

    corecore