1,160 research outputs found

    Compressed sensing electron tomography using adaptive dictionaries: a simulation study

    Get PDF
    Electron tomography (ET) is an increasingly important technique for examining the three-dimensional morphologies of nanostructures. ET involves the acquisition of a set of 2D projection images to be reconstructed into a volumetric image by solving an inverse problem. However, due to limitations in the acquisition process this inverse problem is considered ill-posed (i.e., no unique solution exists). Furthermore reconstruction usually suffers from missing wedge artifacts (e.g., star, fan, blurring, and elongation artifacts). Compressed sensing (CS) has recently been applied to ET and showed promising results for reducing missing wedge artifacts caused by limited angle sampling. CS uses a nonlinear reconstruction algorithm that employs image sparsity as a priori knowledge to improve the accuracy of density reconstruction from a relatively small number of projections compared to other reconstruction techniques. However, The performance of CS recovery depends heavily on the degree of sparsity of the reconstructed image in the selected transform domain. Prespecified transformations such as spatial gradients provide sparse image representation, while synthesising the sparsifying transform based on the properties of the particular specimen may give even sparser results and can extend the application of CS to specimens that can not be sparsely represented with other transforms such as Total variation (TV). In this work, we show that CS reconstruction in ET can be significantly improved by tailoring the sparsity representation using a sparse dictionary learning principle

    Engineering magnetic domain-wall structure in permalloy nanowires

    Get PDF
    Using Lorentz transmission electron microscopy we investigate the behavior of domain walls pinned at non-topographic defects in Cr(3 nm)/Permalloy(10 nm)/Cr(5 nm) nanowires of width 500 nm. The pinning sites consist of linear defects where magnetic properties are modified by a Ga ion probe with diameter ~ 10 nm using a focused ion beam microscope. We study the detailed change of the modified region (which is on the scale of the focused ion spot) using electron energy loss spectroscopy and differential phase contrast imaging on an aberration (Cs) corrected scanning transmission electron microscope. The signal variation observed indicates that the region modified by the irradiation corresponds to ~ 40-50 nm despite the ion probe size of only 10 nm. Employing the Fresnel mode of Lorentz transmission electron microscopy, we show that it is possible to control the domain wall structure and its depinning strength not only via the irradiation dose but also the line orientation.Comment: Accepted for publication in Physical Review Applie

    Texture, twinning and metastable "tetragonal" phase in ultrathin films of HfO<sub>2</sub> on a Si substrate

    Get PDF
    Thin HfO&lt;sub&gt;2&lt;/sub&gt; films grown on the lightly oxidised surface of (100) Si wafers have been examined using dark-field transmission electron microscopy and selected area electron diffraction in plan view. The polycrystalline film has a grain size of the order of 100 nm and many of the grains show evidence of twinning on (110) and (001) planes. Diffraction studies showed that the film had a strong [110] out-of-plane texture, and that a tiny volume fraction of a metastable (possibly tetragonal) phase was retained. The reasons for the texture, twinning and the retention of the metastable phase are discussed

    High resolution structural characterisation of laser-induced defect clusters inside diamond

    Get PDF
    Laser writing with ultrashort pulses provides a potential route for the manufacture of three-dimensional wires, waveguides and defects within diamond. We present a transmission electron microscopy (TEM) study of the intrinsic structure of the laser modifications and reveal a complex distribution of defects. Electron energy loss spectroscopy (EELS) indicates that the majority of the irradiated region remains as sp3sp^3 bonded diamond. Electrically-conductive paths are attributed to the formation of multiple nano-scale, sp2sp^2-bonded graphitic wires and a network of strain-relieving micro-cracks

    Local stabilisation of polar order at charged antiphase boundaries in antiferroelectric (Bi<sub>0.85</sub>Nd<sub>0.15</sub>)(Ti<sub>0.1</sub>Fe<sub>0.9</sub>)O<sub>3</sub>

    Get PDF
    Observation of an unusual, negatively-charged antiphase boundary in (Bi&lt;sub&gt;0.85&lt;/sub&gt;Nd&lt;sub&gt;0.15&lt;/sub&gt;)(Ti&lt;sub&gt;0.1&lt;/sub&gt;Fe&lt;sub&gt;0.9&lt;/sub&gt;)O&lt;sub&gt;3&lt;/sub&gt; is reported. Aberration corrected scanning transmission electron microscopy is used to establish the full three dimensional structure of this boundary including O-ion positions to ~ ± 10 pm. The charged antiphase boundary stabilises tetragonally distorted regions with a strong polar ordering to either side of the boundary, with a characteristic length scale determined by the excess charge trapped at the boundary. Far away from the boundary the crystal relaxes into the well-known Nd-stabilised antiferroelectric phase

    Influence of s-d interfacial scattering on the magnetoresistance of magnetic tunnel junctions

    Full text link
    We propose the two-band s-d model to describe theoretically a diffuse regime of the spin-dependent electron transport in magnetic tunnel junctions (MTJ's) of the form F/O/F where F's are 3d transition metal ferromagnetic layers and O is the insulating spacer. We aim to explain the strong interface sensitivity of the tunneling properties of MTJ's and investigate the influence of electron scattering at the nonideal interfaces on the degradation of the TMR magnitude. The generalized Kubo formalism and the Green's functions method were used to calculate the conductance of the system. The vertex corrections to the conductivity were found with the use of "ladder" approximation combined with the coherent-potential approximation (CPA) that allowed to consider the case of strong electron scattering. It is shown that the Ward identity is satisfied in the framework of this approximation that provides the necessary condition for a conservation of a tunneling current. Based on the known results of ab-initio calculations of the TMR for ballistic junctions, we assume that exchange split quasi-free s-like electrons with the density of states being greater for the majority spin sub-band give the main contribution to the TMR effect. We show that, due to interfacial inter-band scattering, the TMR can be substantially reduced even down to zero value. This is related to the fact that delocalized quasi-free electrons can scatter into the strongly localized d sub-band with the density of states at the Fermi energy being larger for minority spins compared to majority spins. It is also shown that spin-flip electron scattering on the surface magnons within the interface leads to a further decrease of the TMR at finite temperature.Comment: REVTeX4, 20 pages, 9 figures, 1 table, submitted to Phys.Rev.B; In Version 2 the text is substantially improved, the main results and conclusions left the sam

    Detectors—The ongoing revolution in scanning transmission electron microscopy and why this important to material characterization

    Get PDF
    Detectors are revolutionizing possibilities in scanning transmission electron microscopy because of the advent of direct electron detectors that record at a high quantum efficiency and with a high frame rate. This allows the whole back focal plane to be captured for each pixel in a scan and the dataset to be processed to reveal whichever features are of interest. There are many possible uses for this advance of direct relevance to understanding the nano- and atomic-scale structure of materials and heterostructures. This article gives our perspective of the current state of the field and some of the directions where it is likely to go next. First, a wider overview of the recent work in this area is given before two specific examples of its application are given: one is imaging strain in thin films and the other one is imaging changes in periodicity along the beam direction as a result of the formation of an ordered structure in an epitaxial thin film. This is followed by an outlook that presents future possible directions in this rapidly expanding field

    An ellipsoidal mirror for focusing neutral atomic and molecular beams

    Get PDF
    Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope

    Synthesis of H<sub>x</sub>Li<sub>1-x</sub>LaTiO<sub>4</sub> from quantitative solid-state reactions at room temperature

    Get PDF
    The layered perovskite HLaTiO4 reacts stoichiometrically with LiOH·H2O at room temperature to give targeted compositions in the series HxLi1-xLaTiO4. Remarkably, the Li+ and H+ ions are quantitatively exchanged in the solid state and this allows stoichiometric control of ion exchange for the first time in this important series of compounds

    EBSD mapping of herringbone domain structures in tetragonal piezoelectrics

    Get PDF
    Herringbone domain structures have been mapped using electron backscatter diffraction (EBSD) in two tetragonal piezoelectrics, lead zirconate titanate, [Pb(Zr,Ti)O&lt;sub&gt;3&lt;/sub&gt;] and bismuth ferrite – lead titanate, [(PbTi)&lt;sub&gt;0.5&lt;/sub&gt;(BiFe)&lt;sub&gt;0.5&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;]. Analysis of the domain misorientations across the band junctions shows that the structures correspond very well to crystallographic models. High resolution mapping with a 20 nm step size allowed the crystal rotation across one of these band junctions in lead zirconate titanate to be studied in detail and allowed an improved estimation of the peak strain at the junction, of 0.56 GPa. The significance of this for crack nucleation and propagation in such materials is discussed
    corecore