10,250 research outputs found

    Flame sprayed dielectric coatings improve heat dissipation in electronic packaging

    Get PDF
    Heat sinks in electronic packaging can be flame sprayed with dielectric coatings of alumina or beryllia and finished off with an organic sealer to provide high heat and electrical resistivity

    Depolarization volume and correlation length in the homogenization of anisotropic dielectric composites

    Full text link
    In conventional approaches to the homogenization of random particulate composites, both the distribution and size of the component phase particles are often inadequately taken into account. Commonly, the spatial distributions are characterized by volume fraction alone, while the electromagnetic response of each component particle is represented as a vanishingly small depolarization volume. The strong-permittivity-fluctuation theory (SPFT) provides an alternative approach to homogenization wherein a comprehensive description of distributional statistics of the component phases is accommodated. The bilocally-approximated SPFT is presented here for the anisotropic homogenized composite which arises from component phases comprising ellipsoidal particles. The distribution of the component phases is characterized by a two-point correlation function and its associated correlation length. Each component phase particle is represented as an ellipsoidal depolarization region of nonzero volume. The effects of depolarization volume and correlation length are investigated through considering representative numerical examples. It is demonstrated that both the spatial extent of the component phase particles and their spatial distributions are important factors in estimating coherent scattering losses of the macroscopic field.Comment: Typographical error in eqn. 16 in WRM version is corrected in arxiv versio

    Towards gravitationally assisted negative refraction of light by vacuum

    Full text link
    Propagation of electromagnetic plane waves in some directions in gravitationally affected vacuum over limited ranges of spacetime can be such that the phase velocity vector casts a negative projection on the time-averaged Poynting vector. This conclusion suggests, inter alia, gravitationally assisted negative refraction by vacuum.Comment: 6 page

    Keys to the genera of Insectivora, Chiroptera and Rodentia of East Africa

    Get PDF
    Volume: XX

    Depolarization regions of nonzero volume in bianisotropic homogenized composites

    Get PDF
    In conventional approaches to the homogenization of random particulate composites, the component phase particles are often treated mathematically as vanishingly small, point-like entities. The electromagnetic responses of these component phase particles are provided by depolarization dyadics which derive from the singularity of the corresponding dyadic Green functions. Through neglecting the spatial extent of the depolarization region, important information may be lost, particularly relating to coherent scattering losses. We present an extension to the strong-property-fluctuation theory in which depolarization regions of nonzero volume and ellipsoidal geometry are accommodated. Therein, both the size and spatial distribution of the component phase particles are taken into account. The analysis is developed within the most general linear setting of bianisotropic homogenized composite mediums (HCMs). Numerical studies of the constitutive parameters are presented for representative examples of HCM; both Lorentz-reciprocal and Lorentz-nonreciprocal HCMs are considered. These studies reveal that estimates of the HCM constitutive parameters in relation to volume fraction, particle eccentricity, particle orientation and correlation length are all significantly influenced by the size of the component phase particles

    Scattering loss in electro-optic particulate composite materials

    Get PDF
    The effective permittivity dyadic of a composite material containing particulate constituent materials with one constituent having the ability to display the Pockels effect is computed, using an extended version of the strong-permittivity-fluctuation theory which takes account of both the distributional statistics of the constituent particles and their sizes. Scattering loss, thereby incorporated in the effective electromagnetic response of the homogenized composite material, is significantly affected by the application of a low-frequency (dc) electric field

    Robust and Efficient Sifting-Less Quantum Key Distribution Protocols

    Full text link
    We show that replacing the usual sifting step of the standard quantum-key-distribution protocol BB84 by a one-way reverse reconciliation procedure increases its robustness against photon-number-splitting (PNS) attacks to the level of the SARG04 protocol while keeping the raw key-rate of BB84. This protocol, which uses the same state and detection than BB84, is the m=4 member of a protocol-family using m polarization states which we introduce here. We show that the robustness of these protocols against PNS attacks increases exponentially with m, and that the effective keyrate of optimized weak coherent pulses decreases with the transmission T like T^{1+1/(m-2)}

    Testing Error Correcting Codes by Multicanonical Sampling of Rare Events

    Full text link
    The idea of rare event sampling is applied to the estimation of the performance of error-correcting codes. The essence of the idea is importance sampling of the pattern of noises in the channel by Multicanonical Monte Carlo, which enables efficient estimation of tails of the distribution of bit error rate. The idea is successfully tested with a convolutional code

    Surface disinfection challenges for Candida auris: an in-vitro study

    Get PDF
    The emerging pathogenic multidrug-resistant yeast Candida auris is an important source of healthcare-associated infections and of growing global clinical concern. The ability of this organism to survive on surfaces and withstand environmental stressors creates a challenge for eradicating it from hospitals. A panel of C. auris clinical isolates was evaluated on different surface environments against the standard disinfectant sodium hypochlorite and high-level disinfectant peracetic acid. C. auris was shown to selectively tolerate clinically relevant concentrations of sodium hypochlorite and peracetic acid in a surface-dependent manner, which may explain its ability to successfully persist within the hospital environment

    Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential

    Full text link
    Coupled-mode systems are used in physical literature to simplify the nonlinear Maxwell and Gross-Pitaevskii equations with a small periodic potential and to approximate localized solutions called gap solitons by analytical expressions involving hyperbolic functions. We justify the use of the one-dimensional stationary coupled-mode system for a relevant elliptic problem by employing the method of Lyapunov--Schmidt reductions in Fourier space. In particular, existence of periodic/anti-periodic and decaying solutions is proved and the error terms are controlled in suitable norms. The use of multi-dimensional stationary coupled-mode systems is justified for analysis of bifurcations of periodic/anti-periodic solutions in a small multi-dimensional periodic potential.Comment: 18 pages, no figure
    corecore