1,940 research outputs found

    Specificity of Amino Acid Transport in the Tapeworm Hymenolepis Diminuta and its Rat Host

    Get PDF
    Paper by A. J. MacInnis, D. J. Graff, A. Kilejian, and C. P. Rea

    Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes.

    Get PDF
    BAckground: Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences. Results: We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates. Conclusion: We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material

    Efficient depletion of host DNA contamination in malaria clinical sequencing.

    Get PDF
    The cost of whole-genome sequencing (WGS) is decreasing rapidly as next-generation sequencing technology continues to advance, and the prospect of making WGS available for public health applications is becoming a reality. So far, a number of studies have demonstrated the use of WGS as an epidemiological tool for typing and controlling outbreaks of microbial pathogens. Success of these applications is hugely dependent on efficient generation of clean genetic material that is free from host DNA contamination for rapid preparation of sequencing libraries. The presence of large amounts of host DNA severely affects the efficiency of characterizing pathogens using WGS and is therefore a serious impediment to clinical and epidemiological sequencing for health care and public health applications. We have developed a simple enzymatic treatment method that takes advantage of the methylation of human DNA to selectively deplete host contamination from clinical samples prior to sequencing. Using malaria clinical samples with over 80% human host DNA contamination, we show that the enzymatic treatment enriches Plasmodium falciparum DNA up to ∼9-fold and generates high-quality, nonbiased sequence reads covering >98% of 86,158 catalogued typeable single-nucleotide polymorphism loci

    Frequency-Dependent Squeezing for Advanced LIGO

    Get PDF
    The first detection of gravitational waves by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 launched the era of gravitational wave astronomy. The quest for gravitational wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light is being used to improve the shot noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above ∼50\sim 50 Hz. Below this frequency, quantum back action, in the form of radiation pressure induced motion of the mirrors, degrades the sensitivity. To simultaneously reduce shot noise at high frequencies and quantum radiation pressure noise at low frequencies requires a quantum noise filter cavity with low optical losses to rotate the squeezed quadrature as a function of frequency. We report on the observation of frequency-dependent squeezed quadrature rotation with rotation frequency of 30Hz, using a 16m long filter cavity. A novel control scheme is developed for this frequency-dependent squeezed vacuum source, and the results presented here demonstrate that a low-loss filter cavity can achieve the squeezed quadrature rotation necessary for the next planned upgrade to Advanced LIGO, known as "A+."Comment: 6 pages, 2 figures, to be published in Phys. Rev. Let

    Uncorking the potential of wine language for young wine tourists

    Get PDF
    Effective communication with consumers underpins growth in wine knowledge that, in turn, contributes to growth in wine consumption. Indeed, tasting notes may enhance consumers’ experiences of wine. Yet wine language is full of fuzzy concepts. In this chapter, we consider the language used to talk about wine, specifically the humanlike features of wine (e.g., wine is described as honest, sexy, shy, or brooding). We demonstrate that metaphoric language is integral to the experience of wine and influences consumer behaviour. We discuss practical implications for the cellar door experience, and for effective and ethical wine communication. We conclude that metaphoric language is a pedagogical and cultural platform for engaging younger wine tourists in the cellar door experience, which is a significant revenue source for micro, small, and medium wineries
    • …
    corecore