11 research outputs found

    An Overview of the Lightning - Atmospheric Chemistry Aspects of the Deep Convective Clouds and Chemistry (DC3) Experiment

    Get PDF
    Some of the major goals of the DC3 experiment are to determine the contribution of lightning to NO(x) in the anvils of observed thunderstorms, examine the relationship of lightning NO(x) production to flash rates and to lightning channel lengths, and estimate the relative production per flash for cloud-to-ground flashes and intracloud flashes. In addition, the effects of lightning NO(x) production on photochemistry downwind of thunderstorms is also being examined. The talk will survey the observation types that were conducted during DC3 relevant to these goals and provide an overview of the analysis and modeling techniques which are being used to achieve them. NO(x) was observed on three research aircraft during DC3 (the NCAR G-V, the NASA DC-8, and the DLR Falcon) in flights through storm anvils in three study regions (NE Colorado, Central Oklahoma to West Texas, and northern Alabama) where lightning mapping arrays (LMAs) and radar coverage were available. Initial comparisons of the aircraft NOx observations in storm anvils relative to flash rates have been conducted, which will be followed with calculations of the flux of NO(x) through the anvils, which when combined with observed flash rates can be used to estimate storm-average lightning NOx production per flash. The WRF-Chem model will be run for cloud-resolved simulations of selected observed storms during DC3. Detailed lightning information from the LMAs (flash rates and flash lengths as a function of time and vertical distributions of flash channel segments) will be input to the model along with assumptions concerning NO(x) production per CG flash and per IC flash. These assumptions will be tested through comparisons with the aircraft NOx data from anvil traverses. A specially designed retrieval method for lightning NO2 column amounts from the OMI instrument on NASA fs Aura satellite has been utilized to estimate NO2 over the region affected by selected DC3 storms. Combined with NO(x) to NO2 ratios from the aircraft data and WRF-Chem model and observed flash rates, average NO(x) production per flash can be estimated. Ozone production downwind of observed storms can be estimated from the WRF-Chem simulations and the specific downwind flights

    Lightning activity related to satellite and radar observations of a mesoscale convective system over Texas on 7-8 april 2002

    No full text
    A multi-sensor study of the leading-line, trailing-stratiform (LLTS) mesoscale convective system (MCS) that developed over Texas in the afternoon of 7 April 2002 is presented. The analysis relies mainly on operationally available data sources, such as GOES east satellite imagery, WSR-88D radar data, and NLDN cloud-to-ground flash data. In addition, total lightning information in three dimensions from the LDAR II network in the Dallas-Ft. Worth region is used. GOES East satellite imagery revealed several ring-like cloud top structures with a diameter of about 100 km during MCS formation. The throckmorton tornadic supercell which had formed just ahead of the developing linear MCS, was characterized by a high CG+ percentage below a V-shaped cloud top overshoot north of the tornado swath. There were indications of the presence of a tilted electrical dipole in this storm. Also, this supercell had low average CG- first stroke currents and flash multiplicities. Interestingly, especially the average CG+ flash multiplicity in the throckmorton storm showed oscillations with an estimated period of about 15 min. Later on, in the mature LLTS MCS, the radar versus lightning activity comparison revealed two dominant discharge regions at the back of the convective leading edge, and a gentle descent of the upper intracloud lightning region into the trailing stratiform region, apparently coupled to hydrometeor sedimentation. There was evidence for an inverted dipole in the stratiform region of the LLTS MCS, and CG+ flashes from the stratiform region had high first return stroke peak currents. (orig.)Available from TIB Hannover: RR RR 6341(199) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena

    No full text

    High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena

    No full text
    corecore