224 research outputs found

    The form of cosmic string cusps

    Get PDF
    We classify the possible shapes of cosmic string cusps and how they transform under Lorentz boosts. A generic cusp can be brought into a form in which the motion of the cusp tip lies in the plane of the cusp. The cusp whose motion is perpendicular to this plane, considered by some authors, is a special case and not the generic situation. We redo the calculation of the energy in the region where the string overlaps itself near a cusp, which is the maximum energy that can be released in radiation. We take into account the motion of a generic cusp and the resulting Lorentz contraction of the string core. The result is that the energy scales as rL\sqrt {rL} instead of the usual value of r1/3L2/3r^{1/3} L^{2/3}, where rr is the string radius and LL and is the typical length scale of the string. Since r<<Lr << L for cosmological strings, the radiation is strongly suppressed and could not be observed.Comment: 15 pages, ReVTex, 2 postscript figures with eps

    Cosmic Rays From Cosmic Strings

    Full text link
    It has been speculated that cosmic string networks could produce ultra-high energy cosmic rays as a by-product of their evolution. By making use of recent work on the evolution of such networks, it will be shown that the flux of cosmic rays from cosmologically useful, that is GUT scale strings, is too small to be used as a test for strings with any foreseeable technology.Comment: 11, Imperial/TP/93-94/2

    Evolution of Primordial Black Hole Mass Spectrum in Brans-Dicke Theory

    Full text link
    We investigate the evolution of primordial black hole mass spectrum by including both accretion of radiation and Hawking evaporation within Brans-Dicke cosmology in radiation, matter and vacuum-dominated eras. We also consider the effect of evaporation of primordial black holes on the expansion dynamics of the universe. The analytic solutions describing the energy density of the black holes in equilibrium with radiation are presented. We demonstrate that these solutions act as attractors for the system ensuring stability for both linear and nonlinear situations. We show, however, that inclusion of accretion of radiation delays the onset of this equilibrium in all radiation, matter and vacuum-dominated eras.Comment: 18 pages, one figur

    Field theory simulation of Abelian-Higgs cosmic string cusps

    Get PDF
    We have performed a lattice field theory simulation of cusps in Abelian-Higgs cosmic strings. The results are in accord with the theory that the portion of the strings which overlaps near the cusp is released as radiation. The radius of the string cores which must touch to produce the evaporation is approximately r=1r = 1 in natural units. In general, the modifications to the string shape due to the cusp may produce many cusps later in the evolution of a string loop, but these later cusps will be much smaller in magnitude and more closely resemble kinks.Comment: 9 pages, RevTeX, 13 figures with eps

    Constraints on diffuse neutrino background from primordial black holes

    Get PDF
    We calculated the energy spectra and the fluxes of electron neutrino emitted in the process of evaporation of primordial black holes (PBHs) in the early universe. It was assumed that PBHs are formed by a blue power-law spectrum of primordial density fluctuations. We obtained the bounds on the spectral index of density fluctuations assuming validity of the standard picture of gravitational collapse and using the available data of several experiments with atmospheric and solar neutrinos. The comparison of our results with the previous constraints (which had been obtained using diffuse photon background data) shows that such bounds are quite sensitive to an assumed form of the initial PBH mass function.Comment: 18 pages,(with 7 figures

    Accretion, Primordial Black Holes and Standard Cosmology

    Full text link
    Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.Comment: 11 pages, 3 figure

    Comment on ``Evidence for Narrow Baryon Resonances in Inelastic pp Scattering''

    Get PDF
    Compton scattering data are sensitive to the existence of low-mass resonances reported by Tatischeff et al. We show that such states, with their reported properties, are excluded by previous Compton scattering experiments.Comment: One page, submitted to PR

    Supersymmetry and primordial black hole abundance constraints

    Get PDF
    We study the consequences of supersymmetry for primordial black hole (PBH) abundance constraints. PBHs with mass less than about 10^{11}g will emit supersymmetric particles when they evaporate. In most models of supersymmetry the lightest of these particles, the lightest supersymmetric particle (LSP), is stable and will hence survive to the present day. We calculate the limit on the initial abundance of PBHs from the requirement that the present day LSP density is less than the critical density. We apply this limit, along with those previously obtained from the effects of PBH evaporation on nucleosynthesis and the present day density of PBHs, to PBHs formed from the collpase of inflationary density perturbations, in the context of supersymmetric inflation models. If the reheat temperature after inflation is low, so as to avoid the overproduction of gravitinos and moduli, then the lightest PBHs which are produced in significant numbers will be evaporating around the present day and there are therefore no constraints from the effects of the evaporation products on nucleosynthesis or from the production of LSPs. We then examine models with a high reheat temperature and a subsequent period of thermal inflation. In these models avoiding the overproduction of LSPs limits the abundance of low mass PBHs which were previously unconstrained. Throughout we incorporate the production, at fixed time, of PBHs with a range of masses, which occurs when critical collapse is taken into account.Comment: 8 pages RevTeX file with 3 figures incorporated (uses RevTeX and epsf). Version to appear in Phys. Rev. D: minor change to calculation and added discussio

    High Temperature Matter and Gamma Ray Spectra from Microscopic Black Holes

    Full text link
    The relativistic viscous fluid equations describing the outflow of high temperature matter created via Hawking radiation from microscopic black holes are solved numerically for a realistic equation of state. We focus on black holes with initial temperatures greater than 100 GeV and lifetimes less than 6 days. The spectra of direct photons and photons from π0\pi^0 decay are calculated for energies greater than 1 GeV. We calculate the diffuse gamma ray spectrum from black holes distributed in our galactic halo. However, the most promising route for their observation is to search for point sources emitting gamma rays of ever-increasing energy.Comment: 33 pages, 13 figures, to be submitted to PR

    Fatty acids in bovine milk fat

    Get PDF
    Milk fat contains approximately 400 different fatty acid, which make it the most complex of all natural fats. The milk fatty acids are derived almost equally from two sources, the feed and the microbial activity in the rumen of the cow and the lipids in bovine milk are mainly present in globules as an oil-in-water emulsion. Almost 70% of the fat in Swedish milk is saturated of which around 11% comprises short-chain fatty acids, almost half of which is butyric acid. Approximately 25% of the fatty acids in milk are mono-unsaturated and 2.3% are poly-unsaturated with omega-6/omega-3 ratio around 2.3. Approximately 2.7% are trans fatty acids
    corecore