125 research outputs found

    Field theory simulation of Abelian-Higgs cosmic string cusps

    Get PDF
    We have performed a lattice field theory simulation of cusps in Abelian-Higgs cosmic strings. The results are in accord with the theory that the portion of the strings which overlaps near the cusp is released as radiation. The radius of the string cores which must touch to produce the evaporation is approximately r=1r = 1 in natural units. In general, the modifications to the string shape due to the cusp may produce many cusps later in the evolution of a string loop, but these later cusps will be much smaller in magnitude and more closely resemble kinks.Comment: 9 pages, RevTeX, 13 figures with eps

    NEUTRINOS FROM PRIMORDIAL BLACK HOLES

    Full text link
    The emission of particles from black holes created in the early Universe has detectable astrophysical consequences. The most stringent bound on their abundance has been obtained from the absence of a detectable diffuse flux of 100 MeV photons. Further scrutiny of these bounds is of interest as they, for instance, rule out primordial black holes as a dark matter candidate. We here point out that these bounds can, in principle, be improved by studying the diffuse cosmic neutrino flux. Measurements of near-vertical atmospheric neutrino fluxes in a region of low geomagnetic latitude can provide a competitive bound. The most favorable energy to detect a possible diffuse flux of primordial black hole origin is found to be a few MeV. We also show that measurements of the diffuse ντ\nu _\tau flux is the most promising to improve the existing bounds deduced from gamma-ray measurements. Neutrinos from individual black hole explosions can be detected in the GeV-TeV energy region. We find that the kilometer-scale detectors, recently proposed, are able to establish competitive bounds.Comment: 19 pages plus 9 uuencoded and compressed postscript figure

    Comment on ``Evidence for Narrow Baryon Resonances in Inelastic pp Scattering''

    Get PDF
    Compton scattering data are sensitive to the existence of low-mass resonances reported by Tatischeff et al. We show that such states, with their reported properties, are excluded by previous Compton scattering experiments.Comment: One page, submitted to PR

    Relativistic Viscous Fluid Description of Microscopic Black Hole Wind

    Full text link
    Microscopic black holes explode with their temperature varying inversely as their mass. Such explosions would lead to the highest temperatures in the present universe, all the way to the Planck energy. Whether or not a quasi-stationary shell of matter undergoing radial hydrodynamic expansion surrounds such black holes is been controversial. In this paper relativistic viscous fluid equations are applied to the problem. It is shown that a self-consistent picture emerges of a fluid just marginally kept in local thermal equilibrium; viscosity is a crucial element of the dynamics.Comment: 11 pages, revte

    Supersymmetry and primordial black hole abundance constraints

    Get PDF
    We study the consequences of supersymmetry for primordial black hole (PBH) abundance constraints. PBHs with mass less than about 10^{11}g will emit supersymmetric particles when they evaporate. In most models of supersymmetry the lightest of these particles, the lightest supersymmetric particle (LSP), is stable and will hence survive to the present day. We calculate the limit on the initial abundance of PBHs from the requirement that the present day LSP density is less than the critical density. We apply this limit, along with those previously obtained from the effects of PBH evaporation on nucleosynthesis and the present day density of PBHs, to PBHs formed from the collpase of inflationary density perturbations, in the context of supersymmetric inflation models. If the reheat temperature after inflation is low, so as to avoid the overproduction of gravitinos and moduli, then the lightest PBHs which are produced in significant numbers will be evaporating around the present day and there are therefore no constraints from the effects of the evaporation products on nucleosynthesis or from the production of LSPs. We then examine models with a high reheat temperature and a subsequent period of thermal inflation. In these models avoiding the overproduction of LSPs limits the abundance of low mass PBHs which were previously unconstrained. Throughout we incorporate the production, at fixed time, of PBHs with a range of masses, which occurs when critical collapse is taken into account.Comment: 8 pages RevTeX file with 3 figures incorporated (uses RevTeX and epsf). Version to appear in Phys. Rev. D: minor change to calculation and added discussio

    High Temperature Matter and Gamma Ray Spectra from Microscopic Black Holes

    Full text link
    The relativistic viscous fluid equations describing the outflow of high temperature matter created via Hawking radiation from microscopic black holes are solved numerically for a realistic equation of state. We focus on black holes with initial temperatures greater than 100 GeV and lifetimes less than 6 days. The spectra of direct photons and photons from π0\pi^0 decay are calculated for energies greater than 1 GeV. We calculate the diffuse gamma ray spectrum from black holes distributed in our galactic halo. However, the most promising route for their observation is to search for point sources emitting gamma rays of ever-increasing energy.Comment: 33 pages, 13 figures, to be submitted to PR

    Formation of Black Holes from Collapsed Cosmic String Loops

    Get PDF
    The fraction of cosmic string loops which collapse to form black holes is estimated using a set of realistic loops generated by loop fragmentation. The smallest radius sphere into which each cosmic string loop may fit is obtained by monitoring the loop through one period of oscillation. For a loop with invariant length LL which contracts to within a sphere of radius RR, the minimum mass-per-unit length μmin\mu_{\rm min} necessary for the cosmic string loop to form a black hole according to the hoop conjecture is μmin=R/(2GL)\mu_{\rm min} = R /(2 G L). Analyzing 25,57625,576 loops, we obtain the empirical estimate fBH=104.9±0.2(Gμ)4.1±0.1f_{\rm BH} = 10^{4.9\pm 0.2} (G\mu)^{4.1 \pm 0.1} for the fraction of cosmic string loops which collapse to form black holes as a function of the mass-per-unit length μ\mu in the range 103Gμ3×10210^{-3} \lesssim G\mu \lesssim 3 \times 10^{-2}. We use this power law to extrapolate to Gμ106G\mu \sim 10^{-6}, obtaining the fraction fBHf_{\rm BH} of physically interesting cosmic string loops which collapse to form black holes within one oscillation period of formation. Comparing this fraction with the observational bounds on a population of evaporating black holes, we obtain the limit Gμ3.1(±0.7)×106G\mu \le 3.1 (\pm 0.7) \times 10^{-6} on the cosmic string mass-per-unit-length. This limit is consistent with all other observational bounds.Comment: uuencoded, compressed postscript; 20 pages including 7 figure

    Cosmological constraints on primordial black holes produced in the near-critical gravitational collapse

    Get PDF
    The mass function of primordial black holes created through the near-critical gravitational collapse is calculated in a manner fairly independent of the statistical distribution of underlying density fluctuation, assuming that it has a sharp peak on a specific scale. Comparing it with various cosmological constraints on their mass spectrum, some newly excluded range is found in the volume fraction of the region collapsing into black holes as a function of the horizon mass.Comment: 9 pages. Typos corrected. To appear in Physical Review

    Spectral Lags of Gamma-Ray Bursts from Primordial Black Hole (PBH) Evaporations

    Full text link
    Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. PBHs with an initial mass of 5.0 * 10^14 g should be expiring today with a burst of high energy particles. Evaporating PBHs in the solar neighborhood are candidate Gamma-Ray Bursts (GRBs) progenitors. We propose spectral lag, which is the temporal delay between the high energy photon pulse and the low energy photon pulse, as a possible method to detect PBH evaporation events with the Fermi Gamma-ray Space Telescope Observatory.Comment: 3 pages; Published in the proceedings of Huntsville 2008 symposium on GRBs; Indices in Equation 7 and 8 correcte
    corecore