356 research outputs found

    A computational method for the coupled solution of reaction–diffusion equations on evolving domains and manifolds: application to a model of cell migration and chemotaxis

    Get PDF
    In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulk–surface reaction–diffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use a novel moving mesh partial differential equation (MMPDE) approach. The developed method is applied to model problems with known analytical solutions; these experiments indicate second-order spatial and temporal accuracy. Coupled bulk–surface problems occur frequently in many areas; in particular, in the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a model of the two-way interaction of a migrating cell in a chemotactic field, where the bulk region corresponds to the extracellular region and the surface to the cell membrane

    A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds : application to a model of cell migration and chemotaxis

    Get PDF
    In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulk-surface reaction-diffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use a novel moving mesh partial differential equation (MMPDE) approach. The developed method is applied to model problems with known analytical solutions; these experiments indicate second-order spatial and temporal accuracy. Coupled bulk-surface problems occur frequently in many areas; in particular, in the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a model of the two-way interaction of a migrating cell in a chemotactic field, where the bulk region corresponds to the extracellular region and the surface to the cell membrane

    Canonical Partition Functions for Parastatistical Systems of any order

    Get PDF
    A general formula for the canonical partition function for a system obeying any statistics based on the permutation group is derived. The formula expresses the canonical partition function in terms of sums of Schur functions. The only hitherto known result due to Suranyi [ Phys. Rev. Lett. {\bf 65}, 2329 (1990)] for parasystems of order two is shown to arise as a special case of our general formula. Our results also yield all the relevant information about the structure of the Fock spaces for parasystems.Comment: 9 pages, No figures, Revte

    Quantum-Hall Quantum-Bits

    Get PDF
    Bilayer quantum Hall systems can form collective states in which electrons exhibit spontaneous interlayer phase coherence. We discuss the possibility of using bilayer quantum dot many-electron states with this property to create two-level systems that have potential advantages as quantum bits.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. B (Rapid Communications

    Plasma Wave Properties of the Schwarzschild Magnetosphere in a Veselago Medium

    Full text link
    We re-formulate the 3+1 GRMHD equations for the Schwarzschild black hole in a Veselago medium. Linear perturbation in rotating (non-magnetized and magnetized) plasma is introduced and their Fourier analysis is considered. We discuss wave properties with the help of wave vector, refractive index and change in refractive index in the form of graphs. It is concluded that some waves move away from the event horizon in this unusual medium. We conclude that for the rotating non-magnetized plasma, our results confirm the presence of Veselago medium while the rotating magnetized plasma does not provide any evidence for this medium.Comment: 20 pages, 15 figures, accepted for publication in Astrophys. Space Sc

    Electrode Polarization Effects in Broadband Dielectric Spectroscopy

    Get PDF
    In the present work, we provide broadband dielectric spectra showing strong electrode polarization effects for various materials, belonging to very different material classes. This includes both ionic and electronic conductors as, e.g., salt solutions, ionic liquids, human blood, and colossal-dielectric-constant materials. These data are intended to provide a broad data base enabling a critical test of the validity of phenomenological and microscopic models for electrode polarization. In the present work, the results are analyzed using a simple phenomenological equivalent-circuit description, involving a distributed parallel RC circuit element for the modeling of the weakly conducting regions close to the electrodes. Excellent fits of the experimental data are achieved in this way, demonstrating the universal applicability of this approach. In the investigated ionically conducting materials, we find the universal appearance of a second dispersion region due to electrode polarization, which is only revealed if measuring down to sufficiently low frequencies. This indicates the presence of a second charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form (see "Data Conservancy"

    Canted phase in double quantum dots

    Full text link
    We perform a Hartree-Fock calculation in order to describe the ground state of a vertical double quantum dot in the absence of magnetic fields parallel to the growth direction. Intra- and interdot exchange interactions determine the singlet or triplet character of the system as the tunneling is tuned. At finite Zeeman splittings due to in-plane magnetic fields, we observe the continuous quantum phase transition from ferromagnetic to symmetric phase through a canted antiferromagnetic state. The latter is obtained even at zero Zeeman energy for an odd electron number.Comment: 5 pages, 3 figure

    Anisotropic transport in unidirectional lateral superlattice around half-filling of the second Landau level

    Full text link
    We have observed marked transport anisotropy in short period (a=92 nm) unidirectional lateral superlattices around filling factors nu=5/2 and 7/2: magnetoresistance shows a sharp peak for current along the modulation grating while a dip appears for current across the grating. By altering the ratio a/l (with l=sqrt{hbar/eB_perp} the magnetic length) via changing the electron density n_e, it is shown that the nu=5/2 anisotropic features appear in the range 6.6 alt a/l alt 7.2 varying their intensities, becoming most conspicuous at a/l simeq 6.7. The peak/dip broadens with temperature roughly preserving its height/depth up to 250 mK. Tilt experiments reveal that the structures are slightly enhanced by an in-plane magnetic field B_| perpendicular to the grating but are almost completely destroyed by B_| parallel to the grating. The observations suggest the stabilization of a unidirectional charge-density-wave or stripe phase by weak external periodic modulation at the second Landau level.Comment: REVTeX, 5 pages, 3 figures, Some minor revisions, Added notes and reference

    Isothermal Plasma Wave Properties of the Schwarzschild de-Sitter Black Hole in a Veselago Medium

    Full text link
    In this paper, we study wave properties of isothermal plasma for the Schwarzschild de-Sitter black hole in a Veselago medium. We use ADM 3+1 formalism to formulate general relativistic magnetohydrodynamical (GRMHD) equations for the Schwarzschild de-Sitter spacetime in Rindler coordinates. Further, Fourier analysis of the linearly perturbed GRMHD equations for the rotating (non-magnetized and magnetized) background is taken whose determinant leads to a dispersion relation. We investigate wave properties by using graphical representation of the wave vector, the refractive index, change in refractive index, phase and group velocities. Also, the modes of wave dispersion are explored. The results indicate the existence of the Veselago medium.Comment: 24 pages, 12 figures, accepted for publication in Astrophys. Space Sci. arXiv admin note: text overlap with arXiv:1101.0884 and arxiv:1007.285

    Tidal torques. A critical review of some techniques

    Full text link
    We point out that the MacDonald formula for body-tide torques is valid only in the zeroth order of e/Q, while its time-average is valid in the first order. So the formula cannot be used for analysis in higher orders of e/Q. This necessitates corrections in the theory of tidal despinning and libration damping. We prove that when the inclination is low and phase lags are linear in frequency, the Kaula series is equivalent to a corrected version of the MacDonald method. The correction to MacDonald's approach would be to set the phase lag of the integral bulge proportional to the instantaneous frequency. The equivalence of descriptions gets violated by a nonlinear frequency-dependence of the lag. We explain that both the MacDonald- and Darwin-torque-based derivations of the popular formula for the tidal despinning rate are limited to low inclinations and to the phase lags being linear in frequency. The Darwin-torque-based derivation, though, is general enough to accommodate both a finite inclination and the actual rheology. Although rheologies with Q scaling as the frequency to a positive power make the torque diverge at a zero frequency, this reveals not the impossible nature of the rheology, but a flaw in mathematics, i.e., a common misassumption that damping merely provides lags to the terms of the Fourier series for the tidal potential. A hydrodynamical treatment (Darwin 1879) had demonstrated that the magnitudes of the terms, too, get changed. Reinstating of this detail tames the infinities and rehabilitates the "impossible" scaling law (which happens to be the actual law the terrestrial planets obey at low frequencies).Comment: arXiv admin note: sections 4 and 9 of this paper contain substantial text overlap with arXiv:0712.105
    • …
    corecore