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In this paper, we devise a moving mesh finite element method for the approximate solution 
of coupled bulk–surface reaction–diffusion equations on an evolving two dimensional 
domain. Fundamental to the success of the method is the robust generation of bulk 
and surface meshes. For this purpose, we use a novel moving mesh partial differential 
equation (MMPDE) approach. The developed method is applied to model problems with 
known analytical solutions; these experiments indicate second-order spatial and temporal 
accuracy. Coupled bulk–surface problems occur frequently in many areas; in particular, in 
the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a 
model of the two-way interaction of a migrating cell in a chemotactic field, where the 
bulk region corresponds to the extracellular region and the surface to the cell membrane.
 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Coupled bulk–surface problems arise in many areas of engineering and the applied and natural sciences. Examples 
include crystal growth [29], interfacial fluid flows using soluble and insoluble surfactants [7,27], proton diffusion along 
biological membranes [34] and cell signalling [47].

Our motivation for the development of a method for coupled problems on evolving domains comes from the study of 
eukaryotic cell migration and chemotaxis. Chemotaxis, in particular, is essential during embryonic development, immune cell 
function, and cancer metastasis. Eukaryotic cells typically crawl by protruding pseudopods, which are dynamic structures 
based on actin fibres, at the front of the cell [26]. Actin is a globular protein which spontaneously polymerises into linear 
filaments that make up a large fraction of the cell’s cytoskeleton. The key step limiting actin polymerisation is the slow 
initiation of new filaments. Actin assembly can therefore be stimulated by “nucleating factors” which generate new actin 
filaments. In most cells, actin filaments are concentrated just beneath the cellular membrane and crosslinked into a relatively 
rigid cortex. Motor proteins such as myosin II bind to actin filaments in the cortex, crosslinking and contracting them, 
causing cortical tension and mechanical resistance, which together are key determinants of cells’ overall behaviour. New 
actin polymerisation occurs between the cortex and the membrane, giving rise to a pressure pushing the cell membrane 
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outward at the pseudopod; in other regions, cortical tension pulls along the remainder of the cell body. Together these 
processes lead to cell movement.

In [40] we developed a preliminary model of cell migration and chemotaxis where we only considered processes taking 
place on or close to the cell membrane. The model was based on a system of three reaction–diffusion equations posed 
on an evolving curve in two dimensions. An evolving surface finite element method was used to approximate the solution 
of the PDEs and a level set method was used to move the cell boundary. The method was later made more robust and 
more efficient by replacing the level set method by a parameterised finite element approach [39]. The model was shown to 
predict many aspects of real cell behaviour such as cell polarisation, persistent random walk migration in the absence of 
external signals and directed migration in the presence of a gradient in an external chemotactic field [41].

The modelling of a number of important biological processes however also requires the ability to solve model equa-
tions in the extracellular and intracellular domains which are then coupled to equations posed on the cell membrane. 
It is also well appreciated that migrating cells have the ability to shape external chemotactic fields through the use of 
membrane-bound enzymes that degrade the ligand field and by the self-secretion of chemoattractants that allow signal 
relay to neighbouring cells [50]. The modelling of these important effects require the computational ability of solve partial 
differential equations on evolving bulk–surface domains.

Some previous computational studies looking at biological signalling have been carried out assuming fixed cell bound-
aries [36,30,42]. Methods have also been proposed to treat the deforming cell shape; for a recent review see [18]. For 
example, a phase-field approach has been used to model the combined effect of intracellular actin-flow, cell adhesions 
and morphology on cell motility [48]. Normally phase-field methods use isotropic stationary meshes which makes their 
implementation relatively straightforward. However, as the phase-field is smoothed over a small width of size ε, the 
computational mesh needs to be fine enough to resolve this spatial scale which can make the method computationally 
expensive unless some form of local mesh adaptation is used. Another well known embedding method is the level set 
method (LSM) [44]. This approach uses an evolution equation to move a signed distance function; the zero level set of this 
function is then identified as the moving cell boundary. LSMs have been used successfully in cell motility models [49,54]. 
The disadvantage of LSMs is the requirement to maintain a high quality signed distance function which can become diffi-
cult if the evolving cell morphology becomes complicated. Bulk–surface reaction–diffusion systems on stationary domains 
have also been addressed using a simple point cloud method in [31]. An analysis of a finite element method for a steady 
state bulk–surface problem is presented in [13]. Analysis and computations of the diffusion-driven instability properties of 
coupled bulk–surface reaction–diffusion systems on stationary domains is presented in [32,33].

To approximate the solution of bulk–surface systems of equations we will use an Arbitrary Lagrangian–Eulerian (ALE) 
approach. Traditionally, ALE methods have been used to solve problems on moving domains using a reformulation of the 
original problem with respect to an alternative reference frame rather than the standard fixed Eulerian frame. For fluid 
dynamics problems one could decide to use a Lagrangian transformation to follow the fluid flow. More generally however, 
there may be no obvious or preferred reference frame, and if the domain moves in time one may simply be satisfied 
with a transformation from a fixed stationary domain �c onto the physically evolving domain �(t). The ALE formulation 
was introduced for this purpose and it has been used successfully to tackle a number of physical applications such as 
fluid–structure interaction systems (see [24,11]). In this paper we will use a conservative finite element ALE scheme. An 
advantage of the finite element framework is it allows the natural incorporation of flux boundary conditions linking the 
solution components in the bulk and surface domains. Another potential advantage of the ALE approach is the ability to 
accommodate arbitrary mesh movements which are not necessarily Lagrangian. This may help the robustness, accuracy and 
efficiency of the method with fewer instances of remeshing being required.

Crucial to the success of the front-tracking approach used here is the robust generation of cell body-fitted meshes. For 
this purpose we use an adaptive moving mesh procedure based on the solution of a moving mesh partial differential equa-
tions (MMPDEs) [9,19,4,8,23]. Although adaptive moving meshes have been used successfully to solve a range of physical 
problems [5,51,6], to our knowledge they have not been applied to the generation of meshes for curves evolving according 
to a geometric evolution law. An important contribution of this paper therefore is the development of an MMPDE method 
for the tangential motion of grid nodes along a curve which is moving with a specified normal velocity. The proposed 
method is motivated by the approach of Pan and Wetton [45], who devised a finite difference scheme for the generation 
of meshes which equidistribute the arc-length between grid nodes. The new method allows a degree of control over the 
generation of the surface mesh which is then used as known boundary conditions for the generation of the bulk mesh. The 
additional control of the boundary mesh also adds considerable robustness to the grid generation algorithm leading to far 
fewer instances for the need of global remeshing due to poor mesh quality.

The layout of this paper is as follows. In the next section we introduce the necessary notation for the description 
of coupled bulk–surface conservation laws on evolving domains which are then reformulated using a conservative weak 
ALE formulation. In section 3 we present a moving finite element discretisation of the coupled equation system. We then 
describe the generation of computational meshes covering the evolving bulk and surface domains in section 4. The complete 
algorithm is presented in section 5 and applied in section 6 to the simulation of cell migration in a chemotactic field. Finally, 
we draw some conclusions and directions for further research in section 7.
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Fig. 1. We consider the simulation of a motile cell through a fixed lab frame of reference �. The cell membrane is denoted by Ŵ(t) and the extracellular
region close to the cell is denoted by �(t). After a time interval of size �t , the material point located at X p(t) on the cell membrane Ŵ(t) evolves to the 
new location X p(t + �t).

2. Model system equations

The physical layout for the cell migration simulations considered later is shown in Fig. 1. The cell membrane will be 
denoted by the evolving curve Ŵ(t). The cell will be assumed to be moving through fixed lab frame of reference �. To 
improve computational efficiency, the governing equations for the extracellular region will only be computed over the
time-dependent two-dimensional domain �(t), which is centred on the centroid of the cell. We will assume that a material 
particle P located at Xp(t) on Ŵ(t) has velocity Ẋ p(t). Therefore, we assume that there exists a velocity field u so that 
points on Ŵ(t) evolve with a velocity field Ẋ p(t) = u(X p(t), t). Let n = (n1, n2) denote the unit outward normal to Ŵ(t)

and let N (t) be any open subset of R2 containing Ŵ(t). For any function ζ which is differentiable in N (t), we define the 
tangential gradient on Ŵ(t) by ∇Ŵζ = ∇ζ − (∇ζ · n)n, where · denotes the usual scalar product and ∇ζ denotes the usual 
gradient on R2 . For a vector function ζ = (ζ1, ζ2) ∈R

2 , the tangential divergence is defined by

∇Ŵ · ζ = ∇ · ζ −

2
∑

i=1

(∇ζi · n)ni .

The Laplace–Beltrami operator on Ŵ(t) is defined as the tangential divergence of the tangential gradient �Ŵζ = ∇Ŵ · (∇Ŵζ ).
Reaction–diffusion systems of the type studied in pattern formation generally exclude cross-diffusion and are only cou-

pled by the reaction kinetics terms. Therefore, we consider the behaviour of a single chemical species with a straightforward 
generalisation to a system of interacting chemicals. Let us define

Q T = {(x, t) ∈R
3 : x ∈ �(t), t ∈ (0, T ]}. (1)

Application of Reynolds transport theorem to the equation for mass conservation for a chemical C , which diffuses with 
constant D , undergoing reaction at a rate f (c), gives

∂c

∂t
= D�c + f (c), (x, t) ∈ Q T , (2)

where c(x, t) is the concentration at position x ∈ �(t) at time t .
We also consider the evolution of a chemical species Cs , that resides on the boundary Ŵ(t). The bulk species C will be 

coupled to Cs through the generally nonlinear flux boundary condition

Diffusive flux
︷ ︸︸ ︷

−D
∂c

∂n

∣
∣
∣
∣
Ŵ(t)

+

Advective flux
︷ ︸︸ ︷

(u · n)c|Ŵ(t) =

Rate of surface reaction
︷ ︸︸ ︷

g(c|Ŵ(t), cs), (3)

where cs(x, t) denotes the concentration of Cs at the point x ∈ Ŵ(t) and n is the outward unit normal to Ŵ(t). At the 
front of a motile cell (u · n) > 0, leading to an advective flux onto Ŵ(t), and at the back of the cell (u · n) < 0 leading 
to a flux off of Ŵ(t). This so-called windshield effect can potentially have a bearing on the ability of highly motile cells 
to chemotax efficiently in shallow gradients unless some additional mechanisms are employed by the cell such as surface 
ligand degradation or receptor internalisation [16].
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In an analogous manner to the equation for the bulk species, we will assume that the boundary species evolves such 
that

∂cs

∂t
+ ∇Ŵ · (ucs) = Ds�Ŵcs + g(c|Ŵ(t), cs) + h(cs), (x, t) ∈ Ŵ(t) × (0, T ), (4)

where Ds is the boundary diffusion coefficient, h(cs) is a surface reaction term.

2.1. ALE reformulation

For the reasons mentioned earlier, when the domain is moving a common frame of reference adopted for computational 
purposes is the Arbitrary Lagrangian Eulerian (ALE) frame. Let At be a family of bijective mappings, which at each t ∈ I =

[0, T ], map points in a reference or computational configuration �c with coordinates ξ = (ξ, η), to points in the current 
physical configuration �(t) with coordinates x = (x, y), so that

At : �c ⊂ R
2 → �(t) ⊂ R

2, x(ξ , t) = At(ξ). (5)

The computational configuration could simply be the initial physical configuration �(0). We leave the discussion on how to 
construct the mapping At to section 4.

For an arbitrary function g : Q T → R, defined on the fixed Eulerian frame, its temporal derivative in the ALE frame is 
defined as

∂ g

∂t

∣
∣
∣
∣
ξ

: Q T →R,
∂ g

∂t

∣
∣
∣
∣
ξ

(x, t) =
∂ ĝ

∂t
(ξ , t), ξ = A

−1
t (x), (6)

where ĝ : �c × I → R is the corresponding function in the ALE frame; that is ĝ(ξ , t) = g(x(ξ , t), t) = g(At(ξ), t). Taking the 
time derivative of the ALE mapping defines the ALE velocity w as

w(x, t) =
∂x

∂t

∣
∣
∣
∣
ξ

(A−1
t (x), t). (7)

It is important to note that the ALE velocity w on Ŵ(t) will, in general, be different from the material velocity u. When 
w = u the ALE transformation will be purely Lagrangian in nature. To relate the time derivatives with respect to the ALE 
transformation to the material derivative, a standard application of the chain rule gives

∂c

∂t

∣
∣
∣
∣
ξ

=
∂c

∂t

∣
∣
∣
∣
x

+ w · ∇c. (8)

The reformulation of (2) in terms of the ALE reference frame therefore takes the form

∂c

∂t

∣
∣
∣
∣
ξ

− w · ∇c = D�c + f (c), ξ ∈ �c . (9)

Similarly, on the boundary the ALE formulation of (4) takes the form

∂cs

∂t

∣
∣
∣
∣
ξ

+ ∇Ŵ · (ucs) − w · ∇Ŵc = Ds�Ŵc + g(c|Ŵ(t), cs) + h(cs), ξ ∈ ∂�c. (10)

The ALE reformulated equations (9) and (10) remain coupled through the flux boundary condition (3).

2.2. A conservative weak ALE formulation

To construct a weak formulation of (9), we consider a space of admissible test functions defined on the reference domain 
made of functions v̂ ∈ H1(�c). The ALE mapping then defines a set H(�(t)) of test functions on the domain �(t), as 
follows:

H(�(t)) =
{

v : �(t) →R : v = v̂ ◦A
−1
t , v̂ ∈ H1(�c)

}

, t ∈ I.

A weak formulation of (9) can be obtained using Reynolds transport formula which states that if ψ(x, t) is a function defined 
on �(t), and V t ⊆ �(t) such that V t =At(V c) with V c ⊆ �c , then

d

dt

∫

V t

ψ(x, t)dx =

∫

V t

(

∂ψ

∂t

∣
∣
∣
∣
ξ

+ ψ∇ · w

)

dx =

∫

V t

(
∂ψ

∂t

∣
∣
∣
∣
x

+ ∇ψ · w + ψ∇ · w

)

dx. (11)

As functions v̂ ∈ H1(�c) do not depend on time, then for any v ∈ H(�(t)) we can establish from (11) that
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d

dt

∫

�(t)

v dx =

∫

�(t)

v∇ · w dx (12)

and

d

dt

∫

�(t)

vψ dx =

∫

�(t)

v

(

∂ψ

∂t

∣
∣
∣
∣
ξ

+ ψ∇ · w

)

dx. (13)

Multiplying (9) by a test function v ∈ H(�(t)), integrating over �(t) and the use of (3), (12) and (13) gives the conservative 
weak form: find c such that

d

dt

∫

�(t)

cv dx−

∫

�(t)

(∇ · (wc)) v dx + D

∫

�(t)

∇c · ∇v dx+

∫

Ŵ(t)

(g − (u · n)c)v ds

=

∫

�(t)

f v dx, ∀v ∈ H(�(t)). (14)

Similarly, on the boundary we have the conservative weak formulation: find cs such that

d

dt

∫

Ŵ(t)

csvs ds +

∫

Ŵ(t)

(∇Ŵ · ((u − w)cs)) vs ds + Ds

∫

Ŵ(t)

∇Ŵcs · ∇Ŵvs ds

=

∫

Ŵ(t)

(g + h)vs ds, ∀vs ∈ Hs(Ŵ(t)), (15)

where

Hs(Ŵ(t)) =
{

vs : Ŵ(t) →R : vs = v̂s ◦A
−1
t , v̂s ∈ H1(Ŵc)

}

, t ∈ I,

is the space of test function on Ŵ(t).

3. Moving finite element discretisation

3.1. Spatial semi-discretisation

We will assume that, for each t ∈ [0, T ], the physical and reference domains �(t) and �c are approximated by polygonal 
domains �h(t) and �c,h , respectively. We will assume that �c,h is covered by a fixed triangulation Th,c with straight edges, 
so that �c,h = ∪K∈Th,c

K . The approximation of the boundary domain Ŵh(t) is chosen to be simply the boundary of �h(t). 
The total number of elements of Th,c will be denoted by N . The total number of vertices of Th,c will be denoted by N and 
the number of vertices on the boundary as Ns . We define the Lagrangian finite element spaces on Th,c as

L
1(�c,h) = {v̂h ∈ H1(�c,h) : v̂h|K ∈ P1(K ), ∀ K ∈ Th,c},

L
1
0(�c,h) = {v̂h ∈ H1(�c,h) : v̂h|K ∈ L

1(�c,h) : v̂h = 0, ξ ∈ Ŵc,h}, (16)

where P1(K ) is the space of linear polynomials on K .
In section 4 we will describe a procedure for evolving the nodal positions of the triangulation covering �h(t). Given the 

location of the mesh nodes, the ALE mapping will be interpolated using piecewise linear elements giving rise to a discrete 
mapping Ah,t ∈L1(�c,h)

2 of the form

xh(ξ , t) = Ah,t(ξ) =

N
∑

i=1

xi(t)φ̂i(ξ), (17)

where xi(t) = Ah,t(ξ i) denotes the position of node i at time t , and φ̂i is the associated nodal basis function in L1(�c,h). 
The discretised ALE velocity therefore takes the form

wh(ξ , t) =

N
∑

i=1

ẋi(t)φ̂i(ξ).

Let Th,t be the image of the reference triangulation Th,c under the discrete ALE mapping Ah,t . Since the mapping is 
linear, each Kt which is the image of a triangle K ∈ Th,c , is also a triangle with straight edges. Using the ALE mapping, the 
finite element test space on �h(t) is therefore defined as
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Hh(�h(t)) = {vh : �h(t) →R : vh = v̂h ◦A
−1
h,t

, v̂ ∈ L
1(�c,h)}.

The finite element spatial discretisation of the conservative ALE formulation (14) therefore takes the form: find ch(t) ∈
Hh(�h(t)) such that

d

dt

∫

�h(t)

chvh dx −

∫

�h(t)

(∇ · (whch))vh dx+ D

∫

�h(t)

∇ch · ∇vh dx+

∫

Ŵh(t)

(g − (u · n)ch)vh ds

=

∫

�h(t)

f vh dx, ∀vh ∈ Hh(�h(t)). (18)

Similarly, on the boundary, we have the weak formulation: find cs,h ∈Hs,h(Ŵh(t)) such that

d

dt

∫

Ŵh(t)

cs,hvs,h ds +

∫

Ŵh(t)

(∇Ŵ · ((u − wh)cs,h)) vs,h ds + Ds

∫

Ŵh(t)

∇Ŵcs,h · ∇Ŵh
vs,h ds

=

∫

Ŵh(t)

(g + h)vs,h ds, ∀vs,h ∈ Hs,h(Ŵh(t)). (19)

The finite element approximation of the bulk and surface species can be expressed as

ch(x, t) =

N
∑

j=1

c j(t)φ j(x, t), and cs,h(x, t) =

Ns∑

j=1

cs, j(t)φs, j(x, t),

where {φ j(x, t)}Nj=1 and {φs, j(x, t)}
Ns

j=1 are the time-dependent bulk and surface nodal basis functions. If C (t) = {c j(t)}
N
j=1

and C s(t) = {cs, j(t)}
Ns

j=1 , we can express (18) as the system of ordinary differential equations

d

dt
(M(t)C(t)) + [K (t) + A(t, wh(t)) − B(t, wh(t))]C(t) + D(C(t), C s(t)) = F (C(t)), (20)

where

[M(t)]i j =

∫

�h(t)

φi(t)φ j(t) dx

is the (time-dependent) mass matrix, while

[K (t)]i j = D

∫

�h(t)

(∇φ j(t) · ∇φi(t)) dx,

[A(t, wh(t))]i j =

∫

Ŵh(t)

[(u − wh) · n]φi(t)φ j(t) ds,

[B(t, wh(t))]i j = −

∫

�h(t)

[wh · ∇φi(t)]φ j(t) dx,

[D(C(t), C s(t))]i =

∫

Ŵh(t)

[g(ch(t), cs,h(t)) − (u · n)ch(t)]φi(t) ds,

and the load vector

[F (C(t))]i =

∫

�h(t)

f (ch(t))φi(t) dx.

Note that the vector D will be sparse as only those values of i corresponding to boundary vertices will be non-zero. The 
spatial discretisation of the boundary equation (19) results in a system of ODEs

d

dt
(Ms(t)C s(t)) + [Ks(t) + As(t, wh(t))]C s(t) = Ds(C(t), C s(t)) + H(C s(t)), (21)

where



G. MacDonald et al. / Journal of Computational Physics 309 (2016) 207–226 213

[Ms(t)]i j =

∫

Ŵh(t)

φs,i(t)φs, j(t) ds,

[Ks(t)]i j = Ds

∫

Ŵ(t)

(∇Ŵφs, j(t) · ∇Ŵφs,i(t)) ds,

[As(t, wh(t))]i j =

∫

Ŵh(t)

(

[∇Ŵ · (u − wh)]φs,i(t)φs, j(t) + [(u − wh) · ∇Ŵφs, j(t)]φs,i(t)
)

ds,

[H(C s(t))]i =

∫

Ŵh(t)

h(cs,h(t))φs,i(t) ds,

and Ds are the appropriately reordered non-zero elements of D .

3.2. Temporal integration

To obtain a temporal discretisation of (20) and (21) we subdivide [0, T ] into Nt equal time intervals of size �t = T /Nt

and denote tn = n�t , n = 0, 1, . . . , Nt . We will discretise the ALE mapping using linear interpolation between time levels. 
That is we will define

Ah,�t(ξ , t) =
t − tn

�t
Ah,tn+1(ξ) +

tn+1 − t

�t
Ah,tn (ξ), t ∈ [tn, tn+1), (22)

where Ah,t is the piecewise linear map at time t . The mesh velocity is therefore piecewise constant in time and is given by

w
n+1
h,�t

(ξ) =
Ah,tn+1 −Ah,tn

�t
, t ∈ [tn, tn+1),

w
n+1
h,�t

(x, t) = w
n+1
h,�t

(ξ) ◦A
−1
h,�t

(x). (23)

The temporal discretisation of the coupled systems (20) and (21) is obtained using a modified Crank–Nicolson semi-implicit 

approach. We first predict the boundary solution C̃
n+1
s using a semi-implicit backward Euler method, where the linear 

diffusion and mesh movement terms are treated implicitly, and the nonlinear reaction and coupling terms are treated 
explicitly. The predicted boundary solution therefore satisfies the linear system

[Mn+1
s + �t(Kn+1

s + An+1
s )]C̃

n+1
s = Mn

s C
n
s + �t[Ds(C

n, Cn
s ) + H(Cn

s )]. (24)

The bulk approximation is then updated using a Crank–Nicolson step

[Mn+1 + 1
2�t(Kn+1 + An+1 + Bn+1)]Cn+1

= [Mn − 1
2�t(Kn + An + Bn)]Cn + 1

2�t[F (Cn+1) + F (Cn) − D(Cn+1, C̃
n+1
s ) − D(Cn, Cn

s )]. (25)

The nonlinear system (25) is solved using Newton iteration. Finally, to ensure that the boundary solution is second-order in 
time, we perform a Crank–Nicolson correction step

[Mn+1
s + 1

2�t(Kn+1
s + An+1

s )]Cn+1
s

= [Mn
s − 1

2�t(Kn
s + An

s )]C
n
s + 1

2�t[Ds(C
n+1, C̃

n+1
s ) + Ds(C

n, Cn
s ) + H(C̃

n+1
s ) + H(Cn

s )]. (26)

Note that this correction step only requires the solution of a linear system of equations even if the reaction terms on the 
surface, g and h are nonlinear. The linear systems arising above are solved using the iterative method BiCGSTAB [52] and 
an incomplete LU (ILU) factorisation as a preconditioner.

For the cell migration application considered later, we note that the diffusive time scales in the extracellular region are 
often much shorter than the time scale associated with cell migration. As the time integration scheme above is fully implicit 
in the diffusive terms it is therefore robust to the choice of the time step for these applications.

3.3. A model bulk–surface problem on a stationary domain

To get an indication of the spatial and temporal convergence rate of the coupled bulk–surface finite element discretisa-
tion, we apply it to the solution of the following model problem:
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∂c

∂t
= �c, x ∈ � (27)

∂cs

∂t
= �Ŵcs + c − cs, x ∈ Ŵ, (28)

−
∂c

∂n
= c − cs, x ∈ Ŵ, (29)

where � is the unit circle.
This problem can be tackled analytically using polar coordinates x = r cos θ , y = r sin θ so that

∂c

∂t
=

∂2c

∂r2
+

1

r

∂c

∂r
+

1

r2

∂2c

∂θ2
, x ∈ �

∂cs

∂t
=

∂2cs

∂θ2
+ c|r=1 − cs, x ∈ Ŵ,

and

−
∂c

∂r

∣
∣
∣
∣
r=1

= c|r=1 − cs.

Similar to Novak et al. [43], we look for a solution in the form

cs(θ, t) = Ae−k2t cos θ,

and

c(r, θ, t) = ρ(r)cs(θ, t).

The following exact solution has been used to test the convergence of the finite element discretisation:

c(r, θ, t) = J1(rk)e
−k2t cos θ

and

cs(θ, t) =
J1(k)

2− k2
e−k2t cos θ,

where J1 is the first-order Bessel function of the first kind and k = 1.177706027.
Fig. 2 shows the computed approximate solutions in the bulk domain and on the domain boundary using an isotropic 

mesh with maximal cell diameter h = 0.1 and a time step �t = 2 × 10−4 . We can see that the method performs well for 
these values of the discretisation parameters. To test the spatial rate of convergence of the algorithm, simulations were 
performed on a sequence of increasingly refined isotropic meshes. To ensure that the error was dominated by its spatial 
component, a sufficiently small time step of �t = 10−3 was used. Fig. 3(a) shows the maximum error over all grid nodes 
for both the bulk and surface numerical solutions and we can see that both converge at the rate of O (h2), as expected. 
To investigate the temporal rate of converge, simulations were performed using a fine mesh with N = 150,000 elements 
and various time steps. We can see from Fig. 3(b), that the three-step solution procedure (24)–(26) furnishes approxima-
tions which are second-order accurate in time. Note that if the surface solution correction step (26) were omitted then, as 
expected, the resulting approximations were only temporally first-order accurate.

4. Practical evaluation of ALE mapping

For the ALE mapping to be useful, it must satisfy a number of properties. First, it must be inexpensive to construct, 
relative to the cost of solving the physical problem. Second, the resulting meshes covering �(t) must be of good quality 
in the sense that mesh elements are adapted to salient features such at steep boundary or interior layers in the physical 
solution. Finally, the meshes must evolve smoothly in time to avoid the need to use small time steps to maintain numerical 
stability.

4.1. Bulk domain mesh generation

To avoid potential mesh crossings or foldings, we derive a suitable evolution equation for the inverse ALE mapping 
A

−1
t (x) = ξ(x, t) rather than At(ξ ) = x(ξ , t) (see, for example, the discussion in [12]). As shown in Fig. 4, a mesh Th,t on 

�h(t) can then be generated as the preimage of a fixed mesh Th,c on �c,h . As introduced in [22], we choose the mapping 
ξ(x) corresponding to a fixed value of t in order to minimise the functional

I[ξ ] =
1

2

∫

�t

[(∇ξ)T G−1(∇ξ) + (∇η)T G−1(∇η)] dx, (30)
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Fig. 2. Numerical solution of coupled model problem (27)–(29) on a stationary unit circle. (a) Approximate bulk solution ch(x) at t = 1. (b) Approximate 
solution cs,h(θ) on the boundary compared to the exact solution.

Fig. 3. Second-order convergence of the maximum nodal error as (a) h → 0 and (b) �t → 0 for a coupled model problem on a unit circle.

Fig. 4. A moving mesh covering �(t) is the image of a fixed mesh on a reference domain �c through a time-dependent ALE mapping At (ξ) = x(ξ , t).

where G is a 2 × 2 symmetric positive definite matrix referred to as a monitor matrix and ∇ is the gradient operator 
with respect to x. It can be shown that the functional (30) is coercive and uniformly convex and hence has a unique 
minimiser [23].

Rather than directly attempt to minimise (30), a more robust procedure is to evolve the mapping according to the 
modified gradient flow equations

∂ξ

∂t
=

P

τ
∇ · (G−1∇ξ), and

∂η

∂t
=

P

τ
∇ · (G−1∇η). (31)
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Here, τ > 0 is a user-specified temporal smoothing parameter which affects the temporal scale over which the mesh adapts 
and P is a positive function of (x, t), chosen such that the mesh movement has a spatially uniform time scale [19]. The 
gradient flow structure of (31) ensures that the mesh evolves smoothly in time and improves robustness in the choice of 
the initial mesh.

The selection of an appropriate monitor matrix is crucial to the success of mesh adaptation. In this paper, we will 
consider the monitor matrix proposed by Winslow [53]

G =

[

M 0
0 M

]

, (32)

where M(x, t) is a positive weight function called a monitor function. A suitable monitor function is essential to the success of 
adaptive moving mesh methods. The monitor function should be taylored to the type of PDE being solved and the numerical 
method being used. Monitor functions based on interpolation estimates, a posteriori error estimates and adaptation to 
solution features have all been proposed [3,8,23]. If no such estimate exists then the monitor function could be any smooth 
function designed to adapt the mesh towards important solution features such moving interfaces or boundaries (see for 
example [5]).

In practice, we interchange the roles of the dependent and independent variables in (31), since it’s the location of the 
physical mesh points {xi(t)}Ni=1 that defines the ALE map. With a Winslow-type monitor matrix (32) the resulting MMPDEs 
take the form

τ
∂x

∂t
= P (axξξ + bxξη + cxηη + dxξ + exη), (ξ,η) ∈ �c, (33)

where

a =
1

M

x2η + y2η

J2
, b = −

2

M

(xξ xη + yξ yη)

J2
, c =

1

M

x2ξ + y2ξ

J2
,

d =
1

(M J )2
[Mξ (x

2
η + y2η) − Mη(xξ xη + yξ yη)], e =

1

(M J )2

[

−Mξ (xξ xη + yξ yη) + Mη(x2ξ + y2ξ )
]

,

and J = xξ yη − xη yξ is the Jacobian of the ALE mapping. To complete the specification of the coordinate transformation, the 
MMPDE must be supplemented by initial and boundary conditions. In all the applications described later, the computational 
domain �c,h = �h(0), and the initial mesh over the physical domain is obtained using the Matlab toolbox Distmesh [46]. 
To allow the mesh points to move along the boundary Ŵh(t), they are obtained using a one-dimensional moving mesh 
approach outlined in section 4.2. Once the boundary nodes have been evolved over one time step, they then become 
Dirichlet conditions completing the specification for (33).

The numerical solution of (33) requires spatial and temporal discretisation. In space, we discretise using standard linear 
Galerkin finite elements. In the time direction, we use a backward Euler integration scheme to update the solution at 
t = tn+1 , and to avoid solving nonlinear algebraic systems, we evaluate the coefficients a, c, . . . , e at the time t = tn . We 
therefore seek xn+1

h
∈ (L1(�c,h))

2 such that

τ

∫

�c,h

(

x
n+1
h

− x
n
h

�t

)

· v̂h dξ +

∫

�c,h

[

(xn+1
h

)ξ · (an v̂h)ξ + (xn+1
h

)η · (cn v̂h)η

+
1

2
[(xn+1

h
)ξ · (bn v̂h)η + (xn+1

h
)η · (bn v̂h)ξ ] − [dn(xn+1

h
)ξ + en(xn+1

h
)η] · v̂h

]

dξ = 0, (34)

for all v̂h ∈ (L1
0(�c,h))

2 . The resulting linear systems are again solved using the iterative method BiCGSTAB and an incom-
plete LU (ILU) factorisation as a preconditioner. An analysis of the performance of this iterative solver for the discretised 
MMPDE equations can be found in [4].

4.2. Boundary mesh generation

We consider the class of boundary movements given by the following evolution law for the normal velocity

V(x, t) = ακ + β, x ∈ Ŵ(t), (35)

where κ is the curvature. Within the context of biological cell applications, the functions α and β could model the physical 
forces exerted on the membrane by cortical tension, and protrusions caused by actin polymerisation, respectively.

We consider the solution of (35) using a Lagrangian approach, where the main idea is to represent the flow of curves by 
the position vector x which is the solution of the geometric evolution equation

ẋ = Vn + Bt, (36)
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where n and t are unit normal and tangent vectors, respectively. Note that the presence of the tangential velocity B has no 
effect on the shape of the evolving curve but it is well known that the incorporation of a suitably chosen non-zero value of 
B can avoid the major drawback of the Lagrangian approach which is the possibility that grid points merge, resulting in a 
loss of stability and accuracy [2,1,37].

An embedded regular plane curve Ŵ can be parameterised by the smooth function x : S1 → R
2 , i.e. Ŵ = Image(x) :=

{x(σ ), σ ∈ S1}. Taking into account the periodic boundary conditions at σ = 0, 1, we shall hereafter identify S1 with the 
interval [0, 1]. The unit arc-length parameterisation will be denoted by s and it can be shown that xs = t and xss = κn. The 
arc-length of the curve from the point x(σ0) to x(σ ) is given by

s(σ ) =

σ∫

σ0

√

x2σ + y2σ dσ =

σ∫

σ0

‖xσ ‖ dσ ,

where ‖ · ‖ denotes the l2-norm. Using the chain rule

xσ = xs
ds

dσ
= xs‖xσ ‖ (37)

and differentiation of (37) leads to the relation

xσσ = xss‖xσ ‖2 + xs‖xσ ‖s‖xσ ‖. (38)

Multiplying through (38) by n, we get an expression for κ and hence in terms of the parameterisation σ , we can express 
the normal velocity as

V = ẋ · n = α

(
xσσ · n

‖xσ ‖2

)

+ β. (39)

Control of the mesh spacing in the tangential direction can be achieved by ensuring that a weighted arc-length between 
grid nodes is constant. That is, if M(x, t) > 0 is a positive monitor function, then we set

M
ds

dσ
= constant

and hence
(

M
ds

dσ

)

σ

= (M‖xσ ‖)σ = 0. (40)

The differential-algebraic system (39) and (40) could, in theory, be used to evolve the boundary Ŵ(t); the case α = 1, β = 0
and M = 1, which aims to construct a uniform arc-length parameterisation, is exactly the equation system used by Pan and 
Wetton [45]. In [39] we used the parameterised finite element method (PFEM) [2] to evolve the approximation of a curve 
describing an evolving cell membrane. This method introduces an intrinsic tangential velocity B such that the arc-length 
between grid nodes is equidistributed. When using the PFEM to generate boundary node displacements, which are then 
used as boundary data for meshes covering bulk regions, we have found that the lack of control of the PFEM intrinsic 
tangential velocity can lead to poor quality bulk meshes which require frequent remeshing. Experience with the generation 
of adaptive moving meshes suggests however that the introduction of an evolution equation for the tangential velocity, 
driven by the mesh equidistribution condition (40), can significantly improve stability and robustness [21,20,3]. Therefore, 
we consider the tangential velocity equation

B = ẋ · t =
P

τ
(M‖xσ ‖)σ , (41)

where, as before, τ and P are a temporal smoothing parameter and spatial balancing operator, respectively. The proposed 
procedure therefore involves the simultaneous solution of (39) and (41).

For simplicity, we discretise (39) and (41) using a finite difference method. The evolving curve at time tn is represented 
by the discrete plane points xn

i
, i = 1, . . . , Ns . The linear approximation of the curve is therefore given by the polygon with 

vertices xn
i
, i = 1, . . . , Ns . Due to the periodicity conditions, we also use the additional values xn−1 = x

n
Ns−1 , x

n
0 = x

n
Ns

and 
x
n
Ns+1 = x

n
1 . We use a uniform discretisation of the parameterisation interval σ ∈ [0, 1] with step size �σ = 1/Ns . We use 

central finite differences to approximate the spatial derivatives in (39) and a first-order fully implicit temporal discretisation. 
This leads to a nonlinear system which is solved using Picard iteration. Let x[n,m] denote the approximation of x at time 
level tn and iteration level m, then for the normal velocity equations we have the linear system

[−μ[n+1,m]
i x

[n+1,m+1]
i−1 + (1+ 2μ[n+1,m]

i )x
[n+1,m+1]
i − μ[n+1,m]

i x
[n+1,m+1]
i+1 ] · n

[n+1,m]
i

= x
[n+1,m]
i

· n
[n+1,m]
i

+ �tβi, (42)
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for i = 1, . . . , Ns , where μ[n,m]
i

= 4�tαi/(‖x
[n,m]
i+1 − x

[n,m]
i−1 ‖2). We approximate the unit tangent vector

t
n
i =

x
n
i+1 − x

n
i−1

‖xn
i+1 − x

n
i−1‖

= (tn1, t
n
2),

and hence we set nn
i
= (tn2, −tn1). Using a similar discretisation of the tangential velocity equation (41) we have

[−νn
i x

[n+1,m+1]
i−1 + (1+ 2νn

i )x
[n+1,m+1]
i

− νn
i x

[n+1,m+1]
i+1 ] · t

[n+1,m]
i

= x
n
i · t

[n+1,m]
i

+
�t P i

4τ (�σ )2
(Mn

i+1 − Mn
i−1)(‖x

[n+1,m]
i+1 − x

[n+1,m]
i−1 ‖), (43)

for i = 1, . . . , Ns , where νn
i

= �tMn
i
P i/(τ (�σ )2). The coupled set of 2Ns equations (42) and (43) are solved for x[n+1,m+1]

and the Picard iteration is stopped when

‖x[n+1,m+1] − x
[n+1,m]‖ < TOL.

The last iteration is then used as the approximation xn+1 .

4.3. Example

To demonstrate the capability of the proposed adaptive grid generation procedures, we consider the evolution of an 
ellipse under mean curvature flow where V = −ακ , and simultaneously we require the bulk and surface meshes evolve to 
resolve the travelling wave profile

u(x, y, t) =
1

2

[

1+ tanh

(
x+ t − 0.7

0.6

)]

.

There are many possible choices for the monitor function but for illustrative purposes we will set

M(x, y, t) = 1+ sech2
(
x+ t − 0.7

0.6

)

.

The monitor function takes its maximum value at the centre of the travelling wave and decreases smoothly to a non-zero 
constant value far from the front. The resulting adapted mesh should therefore be clustered around the wave but almost 
uniform in the flat regions. The initial physical domain consists of the region exterior to the ellipse 4x2 + 16y2 = 1 and 
interior to a unit circular far-field boundary; the fixed computational domain �c is chosen to be the initial physical domain. 
The computational mesh is obtained using the Matlab toolbox Distmesh [46] and has N = 9832 elements and Ns = 98
vertices on the boundary of the ellipse. The simulations are performed over the time interval t ∈ [0, 7 × 10−2] using a 
constant time step �t = 10−3 . The coefficient of the normal velocity of the evolving curve is α = 0.75, and the temporal 
smoothing parameters in the moving mesh PDEs are both τ = 10−4 . The computed meshes at four representative times are 
shown in Fig. 5. We can see that the initial mesh is adapted towards the wave front which is centred to the right of the 
ellipse at x = 0.7. Initially the boundary mesh points are distributed to equidistribute the arc-length as the monitor function 
M ≈ 1 along the ellipse. At t = 0.02 and t = 0.04, we can see that the bulk meshes have moved to follow the wave front; 
the boundary meshes have also adapted correctly in the tangential direction and evolved in the normal direction according 
to the curvature of the boundary. Finally, at t = 0.05, the wave front has passed by the inner curve and the boundary mesh 
relaxes back to equidistribute the arc-length between mesh points. Fig. 6 shows the adapted boundary meshes; for clarity, 
at the two times when the wave front intersects the boundary, we have indicated its location by a vertical dashed line. We 
can see that at these times the boundary mesh has adapted well to the wave front and at the other two times the mesh 
equidistributes the arc-length of the evolving curve. To test the accuracy of the computed moving boundary, Fig. 7 shows 
the evolution of the exact and approximate area enclosed by the closed curve; the exact area for mean curvature flow takes 
the form A(t) = A(0) − 2παt . We can see that the approximate area decreases linearly in time, and at the times indicated 
it agrees well with the exact area.

5. The complete algorithm

We now describe the complete algorithm implementing the ALE–FEM scheme and the generation of the surface and 
bulk meshes. At time t = tn we assume we have a mesh Th,tn and the finite element approximations cn

h
and cn

s,h
of the 

bulk and surface species, respectively. The following steps are then carried out to advance the mesh and the finite element 
approximations.

1. Update the physical mesh

(a) Using cn
s,h

, calculate the normal velocity of Ŵ given by (35).

(b) Update the location of the manifold Ŵn+1
h

by solving the simultaneous systems (42) and (43).
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Fig. 5. Adaptive bulk meshes for a time-dependent domain where the inner boundary evolves by mean curvature flow. The meshes are adapted to a 
travelling wave profile moving across the domain from right to left.

Fig. 6. Computed meshes for a curve evolving in the normal direction by mean curvature flow; the meshes are also adapted in the tangential direction 
to a travelling wave profile moving across the domain from right to left. Meshes are shown at t = 0, 0.02, 0.04 and t = 0.05. The dashed vertical lines 
correspond to the location of the wave front at the times indicated.
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Fig. 7. Comparison of the evolution of the exact and computed area enclosed by a closed curve under mean curvature flow at t = 0, 0.02, 0.04, 0.05 and 
t = 0.055.

(c) Using the bulk approximation cn
h
, determine the mesh adaptation monitor function M .

(d) Using the updated boundary points as fixed Dirichlet data, update the interior mesh points by solving (34).
(e) Test for mesh quality. If the mesh is fine then goto 2. If not then re-grid and interpolate the solutions onto the new 

mesh and re-do the time step.
2. Update the finite element solutions in the bulk and the surface

(a) Use the meshes Th,tn+1 and Th,tn to define the discrete ALE velocity wh .

(b) Update the solutions cn+1
s,h

and cn+1
h

by solving (24)–(26).

To determine the quality of the bulk meshes we measure the minimum angle over all of the triangles and decide to remesh 
when this is below a given tolerance. The new mesh covering the physical domain is then used as the fixed computational 
mesh. The bulk and boundary solutions are then linearly interpolated onto the new mesh to allow further time integration.

6. Cell migration and chemotaxis

We now consider the application of the developed algorithm to the computational modelling of eukaryotic cell migration 
and chemotaxis. In [40,41] we developed a “pseudopod-centered” [25] model based on a system of reaction–diffusion equa-
tions that gives rise to a suitable spatiotemporal activator profile that can be used for the generation of pseudopods without 
the need for a driving external signal. The following set of equations was derived from a well-established discrete model 
developed by Meinhardt [35] (M model). The model describes the dynamic interaction between a membrane-bound local 
autocatalytic activator a, a rapidly distributed global inhibitor b and a local inhibitor c. Assuming that the cell boundary 
Ŵ(t) moves with velocity u, then for x ∈ Ŵ(t) the equations take the form

∂a

∂t
+ ∇Ŵ · (ua) = Da�Ŵa +

s(a2/b + ba)

(sc + c)(1 + saa2)
− raa, (44)

∂b

∂t
+ ∇Ŵ · (ub) = Db�Ŵb − rbb +

rb

|Ŵ(t)|

∮

Ŵ(t)

a dx, (45)

∂c

∂t
+ ∇Ŵ · (uc) = Dc�Ŵc + bca − rcc. (46)

Here, ra, rb and rc denote decay rates of the local activator, global inhibitor and local inhibitor, respectively. The correspond-
ing diffusion coefficients are Da, Db and Dc . In the nonlinear reaction term in the activator equation, sa is a saturation 
coefficient, sc is a Michaelis–Menten constant and ba is a basal production rate of the activator. The constant bc determines 
the growth of the local inhibitor c in the presence of the activator a. The effect of any external chemotactic field is incorpo-
rated in the signal term s. All of the variables appearing in this model are assumed to be non-dimensional. The activators 
and inhibitors in this model are not intended to represent molecular species. Although some molecular-based models have 
been successful in describing individual processes, the global morphology of real cells has proven too complex for such a 
description at present. We therefore have used a top-down approach, where each parameter can represent several molecular 
species. The pseudopod activator could read out at the level of actin nucleation, for example, through SCAR/WAVE proteins.

We assume that actin polymerisation creates a protrusive pressure that pushes the cell membrane outward in the normal 
direction. Recent detailed investigation of pseudopod formation suggests that this assumption is valid for cells migrating in 
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the absence of external cues and in the presence of chemotactic gradients [5,4]. We will assume that the rate of polymeri-
sation is proportional to the concentration of the local activator. At rest, the cell experiences pressure from cortical tension, 
which maintains the spherical shape of the cell. Using a cortical shell-liquid drop model [7], the pressure generated by 
the cortical tension is assumed to act normally on the cell membrane and depends on the local surface curvature. The cell 
boundary is therefore assumed to evolve with the normal velocity

V(x, t) = Kprota(x, t) − λ(t)κ, x ∈ Ŵ(t). (47)

To control the area enclosed by Ŵ(t), we have used a spatially constant but time dependent cortical tension factor λ(t). 
Larger values of λ will increase the cortical tension, which will eventually result in a decrease in the cell area. Conversely, 
by decreasing λ the cortical tension is weakened, leading to an increase in cell area. There are many possible forms that a 
dynamic equation for λ could take, but we have found through numerical experimentation that the following works well:

dλ

dt
=

λ0λ(A − A0 + dA/dt)

A0(λ + λ0)
− βλ. (48)

Here, λ0 and β are positive parameters and A0 is the initial prescribed area of the cell. Equation (48) is solved numerically 
using an explicit Euler method.

The simulations of cell chemotaxis presented in [40,41] were obtained using an approximation of the local fractional 
receptor occupancy, i.e. the ratio of the local number of ligand-bound receptors to the total number of receptors. The 
receptor occupancy was estimated using a ligand–receptor binding model which assumed the extracellular ligand field 
was unaffected by the binding process and the fact that the cell is moving and constantly changing morphology. While 
the predictions in [40,41] displayed many attributes of real cell chemotaxis, we now consider a model to account for the 
interaction of the cell on the external chemotactic field.

In the extracellular region, �(t), we assume that the concentration of ligand molecules evolves according to a linear 
diffusion equation. At the cell membrane, Ŵ(t), we assume that a chemoattractant ligand L binds reversibly to a receptor R
to form a receptor–ligand complex LR. The coupled bulk–surface system for the evolution of the ligand concentration, l, and 
the concentration of bound receptors, ls , therefore takes the form

∂l

∂t
= D�l, x ∈ �(t) (49)

∂ls

∂t
+ ∇Ŵ · (uls) = Ds�Ŵls + k1(Rtot − ls)l − k−1ls, x ∈ Ŵ(t). (50)

Here, D and Ds are the diffusion coefficients for the ligand and receptor–ligand complex, respectively. We assume that the 
total concentration of bound and unbound receptors is constant and takes the value Rtot . The constant k1 is the rate of 
ligand association and k−1 the rate of disassociation. The normal flux boundary condition between the extracellular region 
and the cell membrane takes the form

−D
∂l

∂n
− [(u · n)]l = k1(Rtot − ls)l − k−1ls, x ∈ Ŵ(t). (51)

Determining the concentration of bound receptors, ls allows the estimation of the local fractional receptor occupancy

Ro(x, t) =
ls(x, t)

Rtot

.

It has been observed that some cells move randomly in the absence of any external cues. We have therefore included an 
intrinsic noise component to our system that is independent of the external chemotactic signal. For this purpose we will 
assume that the intrinsic noise ηt satisfies a stochastic differential equation of mean reverting type [40]. The combined 
effect of the response to the external signal and random intrinsic noise is modelled by the term

s(x, t) = ra(η
t + Ro(x, t)),

which feeds in multiplicatively to the autocatalytic activator equation (44).

6.1. Migration in a linear gradient

The following numerical experiments were performed using the parameters found in Table 1 and a uniform time step 
�t = 0.1. We first simulate a cell moving in a linear gradient of the chemoattractant field given initially by

l(x, y) = 5.3+ 8.5(x+ 0.1). (52)

With the receptor–ligand disassociation constant Kd = k−1/k1 = 30, the receptor occupancy initially at the back of the cell 
Rb
o = 0.15, and at the front of the cell R f

o = 0.19. To improve computational efficiency when there is significant cell move-
ment, the diffusion equation is solved over a time-dependent annular region �(t), where the internal boundary represents 
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Table 1

Non-dimensional default parameter values for cell migration simulations. Parameters for the pseudopod-centred 
cell migration model are taken from [40].

Quantity Symbol Value

Decay rate of activator ra 2× 10−2

Basic production rate of activator ba 1× 10−1

Saturation of activator autocatalysis sa 5× 10−4

Diffusion coefficient of activator Da 4× 10−7

Production & decay rate of global inhibitor rb 3× 10−2

Diffusion coefficient of global inhibitor Db 4× 10−5

Production rate of local inhibitor bc 7× 10−3

Decay rate of local inhibitor rc 1.3× 10−2

Diffusion coefficient of local inhibitor Dc 2.8× 10−6

Michaelis–Menten constant sc 2× 10−1

Scaling of protrusive velocity Kprot 1× 10−5

Cortical tension factor λ0 2× 10−6

Cortical tension factor β 2× 10−2

Bulk ligand diffusion coefficient D 10
Ligand association rate k1

1
30

Ligand disassociation rate k−1 1
Ligand–receptor complex diffusion coefficient Ds 1× 10−6

Total number of receptors on cell 2πr0Rtot 7× 104

Fig. 8. Simulation of single-cell chemotaxis. Although the cell’s morphology is constantly changing by pseudopod extension and retraction, the cell’s pathway 
exhibits a strong degree of directional persistence up the chemoattractant gradient to the right.

the cell membrane, and the outer far-field boundary is a circle centred on the moving cell. The radius of the far-field 
boundary r f = 3r0 , where the initial radius of the cell r0 = 0.1. At the far-field boundary the ligand concentration is given 
by (52). The initial mesh has N = 6250 elements and is adapted isotropically towards the cell membrane; this mesh is then 
kept fixed as the initial computational mesh covering �c . Fig. 8 shows four snap-shots of a simulated cell moving in the 
correct direction to the right. The cell migrates by the generation and splitting of pseudopods at the front of the cell while 
retracting the back. The generated mesh at one particular time is shown in Fig. 9. We can see that the bulk and boundary 
meshes are of high quality and follow the changing morphology of the migrating cell. Of the 5 × 105 time steps used in 
this simulation, only 42 remeshing steps were required demonstrating the robustness of the grid generation algorithms. 
The computational method has been implemented in MATLAB to make use of the Distmesh algorithm for the generation 
of the initial mesh and meshes when re-gridding is needed. The simulations in this section took approximately 3 hours 
of computing time on a desktop machine using an Intel i7 2600 quad core processor running at 3.4 GHz. In this time the 
simulated cell had migrated a distance of approximately 10 cell diameters. No major attempt was made to optimise the 
code; it can be expected that run times would be reduced dramatically by computing in an appropriate low-level language.

6.2. Migration in an initially homogeneous field

We now consider the possibility of a cell to shape an initially homogeneous ligand field and investigate the feedback 
of this interaction on the cell’s migratory pattern. The biological interest in this problem comes from recent experimental 
observations that some migrating cells locally self-generate chemotactic gradients thus leading to increased persistence of 
migration or sustained directed migration [10,38]. Fig. 10 shows a simulation of a typical cell, where the initial ligand 
concentration is constant throughout the extracellular domain. We can see that movement of the cell, and changes to 
the cell morphology affect the ligand field (a). In particular, when a new pseudopod is created (b), the cell pushes out 



G. MacDonald et al. / Journal of Computational Physics 309 (2016) 207–226 223

Fig. 9. Global and close up view of a typical mesh used for the simulation of cell chemotaxis. The mesh follows faithfully the migrating cell and is of good 
quality close to the cell membrane.

its membrane and this results in the local dilution of the concentration of the receptor–ligand complex (c). As the total 
receptor concentration is assumed constant, this means that additional unbound receptors become available to bind ligand 
molecules at the cell membrane (d). The bulk concentration at the cell surface is then depleted resulting in a local gradient 
in the bulk ligand field towards the cell (e). Conversely, in areas where the cell membrane is retracted such as the back of 
the cell and at retracting pseudopods, the local concentration of receptor–ligand complex increases slightly and this creates 
a gradient in the bulk ligand field away from the cell surface which drives ligand molecules away from the cell surface in 
these areas. The overall effect of these interactions between the extracellular ligand field and the surface receptor binding 
kinetics is to enhance the polarity and the persistence of the migrating cell even though the unperturbed background field is 
homogeneous. Additional reactions such as the degradation of ligand molecules by membrane bound enzymes and receptor 
internalisation could also play a major role in the generation of self-generated gradients and we intend to consider these 
possibilities in the future.

7. Conclusions and further work

In this paper, we have developed a computational framework for the solution of coupled bulk–surface reaction–diffusion 
equations in two dimensions. The proposed algorithm is based on a conservative finite element ALE scheme to approximate 
the solution of the PDEs, and an adaptive moving mesh method for grid generation. A novel MMPDE approach has been 
developed to simulate a curve moving in the normal direction by a geometric evolution law that also allows control of the 
tangential distribution of mesh points. The overall algorithm has been shown to work well when applied to model problems 
with known analytical solutions. The method has also been applied to a model of cell migration and chemotaxis and shown 
to predict a possible novel mechanism for cells to increase their persistence and polarity by generating their own local 
gradients of chemoattractants. The numerical algorithm has proved to be very robust and requires few global remeshing 
steps even though the simulated cell morphology is constantly changing while it is migrating. The methodology is simple 
to implement using standard finite element procedures and freely available routines for initial grid generation.

In future, we aim to use the developed computational framework to tackle intracellular cell processes. The main issue 
there will be the proper description of the deformation of material points within the moving cell. This is of course a highly 
non-trivial issue although there have been attempts to model the cell mechanics as an active viscoelastic medium [28,17].

The computational approach presented here has been applied to a model of single cell migration and chemotaxis. It is of 
course of great interest how populations of cells migrate and interact with their micro-environment and each other. To apply 
the approach used here would be a major challenge if many cells were to be simulated given the fitted nature of the bulk 
mesh covering the highly dynamic extracellular region. We think the approach presented here is best suited to obtaining 
detailed information from simulations of single cells or the interaction of a small number of cells. This information can then 
be used to properly inform population models based on partial differential equations for the density of cells using upscaling 
techniques.

Ultimately, we would like to extend our approach to model cell migration and chemotaxis in three dimensions. Using a 
suitable variational formulation, the adaptive moving mesh method used here to evolve grid nodes in the tangential direc-
tion should extend to two-dimensional surfaces. This equation system could then be coupled to a geometric evolution law 
for the surface normal velocity. The MMPDE approach could then be used to generate evolving meshes for three-dimensional 
bulk domains. The ALE surface finite element method has already been utilised for solving PDEs on evolving surfaces [14,
15] and the bulk ALE–FEM method proposed here also extends naturally to three dimensions. The main challenge in three 
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Fig. 10. Simulation of cell migration in an initially homogeneous chemotactic field. (a) Cell outlines and ligand field at equal time intervals; (b) Close-up 
showing the generation of a pseudopod pushing outwards (blue arrow) and a retracting older pseudopod (red arrow); (c) Receptor occupancy on the cell 
membrane; (d) Proportion of the total number of receptors that are unoccupied and (e) the external ligand field at the cell membrane. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

dimensions however is not likely to be the development of efficient computational techniques but the increased complexity 
of modelling the interaction of migrating cells with their extracellular environment. The insights gained from modelling 
attempts in two dimensions would therefore be an essential first step in this direction.
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