20,416 research outputs found

    The Influence of Formulation, Buffering, pH and Divalent Cations on the Activity of Endothall on Hydrilla.

    Get PDF
    Endothall has been used as an aquatic herbicide for more than 40 years and provides very effective weed control of many weeds. Early research regarding the mechanism-of-action of endothall contradicts the symptomology normally associated with the product. Recent studies suggest endothall is a respiratory toxin but the mechanism-of-action remains unknown. To further elucidate the activity of endothall, several endothall formulations were evaluated for their effects on ion leakage, oxygen consumption and photosynthetic oxygen evolution from hydrilla shoot tips. The influence of pH, buffering and divalent cations was also evaluated. (PDF contains 6 pages.

    Buffalo National River Ecosystems - Part II

    Get PDF
    The priorities were established for the Buffalo National River Ecosystem Studies through meetings and correspondence with Mr. Roland Wauer and other personnel of the Office of Natural Sciences, Southwest Region of the National Park Service. These priorities were set forth in the appendix of contract no. CX 700050443 dated May 21, 1975

    G-Compactness and Groups

    Full text link
    Lascar described E_KP as a composition of E_L and the topological closure of EL. We generalize this result to some other pairs of equivalence relations. Motivated by an attempt to construct a new example of a non-G-compact theory, we consider the following example. Assume G is a group definable in a structure M. We define a structure M_0 consisting of M and X as two sorts, where X is an affine copy of G and in M_0 we have the structure of M and the action of G on X. We prove that the Lascar group of M_0 is a semi-direct product of the Lascar group of M and G/G_L. We discuss the relationship between G-compactness of M and M_0. This example may yield new examples of non-G-compact theories.Comment: 18 page

    The value of hippocampal and temporal horn volumes and rates of change in predicting future conversion to AD.

    Get PDF
    Hippocampal pathology occurs early in Alzheimer disease (AD), and atrophy, measured by volumes and volume changes, may predict which subjects will develop AD. Measures of the temporal horn (TH), which is situated adjacent to the hippocampus, may also indicate early changes in AD. Previous studies suggest that these metrics can predict conversion from amnestic mild cognitive impairment (MCI) to AD with conversion and volume change measured concurrently. However, the ability of these metrics to predict future conversion has not been investigated. We compared the abilities of hippocampal, TH, and global measures to predict future conversion from MCI to AD. TH, hippocampi, whole brain, and ventricles were measured using baseline and 12-month scans. Boundary shift integral was used to measure the rate of change. We investigated the prediction of conversion between 12 and 24 months in subjects classified as MCI from baseline to 12 months. All measures were predictive of future conversion. Local and global rates of change were similarly predictive of conversion. There was evidence that the TH expansion rate is more predictive than the hippocampal atrophy rate (P=0.023) and that the TH expansion rate is more predictive than the TH volume (P=0.036). Prodromal atrophy rates may be useful predictors of future conversion to sporadic AD from amnestic MCI

    Anomalous Fisher-like zeros for the canonical partition function of noninteracting fermions

    Full text link
    Noninteracting fermions, placed in a system with a continuous density of states, may have zeros in the NN-fermion canonical partition function on the positive real β\beta axis (or very close to it), even for a small number of particles. This results in a singular free energy, and instability in other thermal properties of the system. In the context of trapped fermions in a harmonic oscillator, these zeros are shown to be unphysical. By contrast, similar bosonic calculations with continuous density of states yield sensible results.Noninteracting fermions, placed in a system with a continuous density of states yield sensible results.Comment: 5 pages and 5 figure

    Microscopic Functional Integral Theory of Quantum Fluctuations in Double-Layer Quantum Hall Ferromagnets

    Full text link
    We present a microscopic theory of zero-temperature order parameter and pseudospin stiffness reduction due to quantum fluctuations in the ground state of double-layer quantum Hall ferromagnets. Collective excitations in this systems are properly described only when interactions in both direct and exchange particle-hole channels are included. We employ a functional integral approach which is able to account for both, and comment on its relation to diagrammatic perturbation theory. We also discuss its relation to Gaussian fluctuation approximations based on Hubbard-Stratonovich-transformation representations of interactions in ferromagnets and superconductors. We derive remarkably simple analytical expressions for the correlation energy, renormalized order parameter and renormalized pseudospin stiffness.Comment: 15 pages, 5 figure

    Spin-dependent Seebeck coefficients of Ni_{80}Fe_{20} and Co in nanopillar spin valves

    Get PDF
    We have experimentally determined the spin-dependent Seebeck coefficient of permalloy (Ni_{80}Fe_{20}) and cobalt (Co) using nanopillar spin valve devices. The devices were specifically designed to completely separate heat related effects from charge related effects. A pure heat current through the nanopillar spin valve, a stack of two ferromagnetic layers (F) separated by a non-magnetic layer (N), leads to a thermovoltage proportional to the spin-dependent Seebeck coefficient S_{S}=S_{\uparrow}-S_{\downarrow} of the ferromagnet, where S_{\uparrow} and S_{\downarrow} are the Seebeck coefficient for spin-up and spin-down electrons. By using a three-dimensional finite-element model (3D-FEM) based on spin-dependent thermoelectric theory, whose input material parameters were measured in separate devices, we were able to accurately determine a spin-dependent Seebeck coefficient of -1.8 microvolt/Kelvin and -4.5 microvolt/Kelvin for cobalt and permalloy, respectively corresponding to a Seebeck coefficient polarization P_{S}=S_{S}/S_{F} of 0.08 and 0.25, where S_{F} is the Seebeck coefficient of the ferromagnet. The results are in agreement with earlier theoretical work in Co/Cu multilayers and spin-dependent Seebeck and spin-dependent Peltier measurements in Ni_{80}Fe_{20}/Cu spin valve structures

    Evaluation of the Water Footprint of Beef Cattle Production in Nebraska

    Get PDF
    Data were compiled on feed usage to model the amount of water needed to produce beef in typical Nebraska production systems. Production systems where cows were wintered on corn residue utilized 18% less water than systems utilizing native range as a wintering source, because of water allocations. Therefore, the water footprint (gallons of water required to produce one pound of boneless meat) was decreased by 18%. In addition, increasing the dietary inclusion of distillers grains from 0% to 40% decreased the water footprint in the finishing phase by 29%, again based on water allocation. Utilizing corn residue and distillers grains in Nebraska beef cattle systems decreases the overall water footprint of production. Additionally, the water footprint of the systems analyzed was 80% green water as rain, minimizing the environmental impact of beef production on freshwater use and ecological water balance

    Current noise of a quantum dot p-i-n junction in a photonic crystal

    Full text link
    The shot-noise spectrum of a quantum dot p-i-n junction embedded inside a three-dimensional photonic crystal is investigated. Radiative decay properties of quantum dot excitons can be obtained from the observation of the current noise. The characteristic of the photonic band gap is revealed in the current noise with discontinuous behavior. Applications of such a device in entanglement generation and emission of single photons are pointed out, and may be achieved with current technologies.Comment: 4 pages, 3 figures, to appear in Phys. Rev. B (2005

    Eigenvalue Separation in Some Random Matrix Models

    Full text link
    The eigenvalue density for members of the Gaussian orthogonal and unitary ensembles follows the Wigner semi-circle law. If the Gaussian entries are all shifted by a constant amount c/Sqrt(2N), where N is the size of the matrix, in the large N limit a single eigenvalue will separate from the support of the Wigner semi-circle provided c > 1. In this study, using an asymptotic analysis of the secular equation for the eigenvalue condition, we compare this effect to analogous effects occurring in general variance Wishart matrices and matrices from the shifted mean chiral ensemble. We undertake an analogous comparative study of eigenvalue separation properties when the size of the matrices are fixed and c goes to infinity, and higher rank analogues of this setting. This is done using exact expressions for eigenvalue probability densities in terms of generalized hypergeometric functions, and using the interpretation of the latter as a Green function in the Dyson Brownian motion model. For the shifted mean Gaussian unitary ensemble and its analogues an alternative approach is to use exact expressions for the correlation functions in terms of classical orthogonal polynomials and associated multiple generalizations. By using these exact expressions to compute and plot the eigenvalue density, illustrations of the various eigenvalue separation effects are obtained.Comment: 25 pages, 9 figures include
    • …
    corecore