22,988 research outputs found

    Online Forum Thread Retrieval using Pseudo Cluster Selection and Voting Techniques

    Full text link
    Online forums facilitate knowledge seeking and sharing on the Web. However, the shared knowledge is not fully utilized due to information overload. Thread retrieval is one method to overcome information overload. In this paper, we propose a model that combines two existing approaches: the Pseudo Cluster Selection and the Voting Techniques. In both, a retrieval system first scores a list of messages and then ranks threads by aggregating their scored messages. They differ on what and how to aggregate. The pseudo cluster selection focuses on input, while voting techniques focus on the aggregation method. Our combined models focus on the input and the aggregation methods. The result shows that some combined models are statistically superior to baseline methods.Comment: The original publication is available at http://www.springerlink.com/. arXiv admin note: substantial text overlap with arXiv:1212.533

    Spatially partitioned embedded Runge-Kutta Methods

    Get PDF
    We study spatially partitioned embedded Rungeā€“Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in non-embedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to non-physical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted non-oscillatory (WENO) spatial discretizations. Numerical experiments are provided to support the theory

    Magneto-electric coupling in zigzag graphene nanoribbons

    Full text link
    Zigzag graphene nanoribbons can have magnetic ground states with ferromagnetic, antiferromagnetic, or canted configurations, depending on carrier density. We show that an electric field directed across the ribbon alters the magnetic state, favoring antiferromagnetic configurations. This property can be used to prepare ribbons with a prescribed spin-orientation on a given edge.Comment: 4 pages, 5 figure

    Nernst and Seebeck effect in a graphene nanoribbon

    Get PDF
    The thermoelectric power, including the Nernst and Seebeck effects, in graphene nanoribbon is studied. By using the non-equilibrium Green function combining with the tight-binding Hamiltonian, the Nernst and Seebeck coefficients are obtained. Due to the electron-hole symmetry, the Nernst coefficient is an even function of the Fermi energy while the Seebeck coefficient is an odd function regardless of the magnetic field. In the presence of a strong magnetic field, the Nernst and Seebeck coefficients are almost independent of the chirality and width of the nanoribbon, and they show peaks when the Fermi energy crosses the Landau levels. The height of nn-th (excluding n=0n=0) peak is [lnā”2/āˆ£nāˆ£][\ln2/|n|] for the Nernst effect and is lnā”2/n\ln2/n for the Seebeck effect. For the zeroth peak, it is abnormal with height [2lnā”2][2\ln2] for the Nernst effect and the peak disappears for the Seebeck effect. When the magnetic field is turned off, however, the Nernst effect is absent and only Seebeck effect exists. In this case, the Seebeck coefficient strongly depends on the chirality of the nanoribbon. The peaks are equidistant for the nanoribbons with zigzag edge but are irregularly distributed for the armchair edge. In particular, for the insulating armchair ribbon, the Seebeck coefficient can be very large near the Dirac point. When the magnetic field varies from zero to large values, the differences among the Seebeck coefficients for different chiral ribbons gradually vanish and the nonzero value of Nernst coefficient appears first near the Dirac point then gradually extents to the whole energy region.Comment: 8 pages, 7 figure

    Effective order strong stability preserving Rungeā€“Kutta methods

    Get PDF
    We apply the concept of effective order to strong stability preserving (SSP) explicit Rungeā€“Kutta methods. Relative to classical Rungeā€“Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of effective order methods. We show that this allows the construction of four-stage SSP methods with effective order four (such methods cannot have classical order four). However, we also prove that effective order five methodsā€”like classical order five methodsā€”require the use of non-positive weights and so cannot be SSP. By numerical optimization, we construct explicit SSP Rungeā€“Kutta methods up to effective order four and establish the optimality of many of them. Numerical experiments demonstrate the validity of these methods in practice

    Gilbert Damping in Conducting Ferromagnets II: Model Tests of the Torque-Correlation Formula

    Full text link
    We report on a study of Gilbert damping due to particle-hole pair excitations in conducting ferromagnets. We focus on a toy two-band model and on a four-band spherical model which provides an approximate description of ferromagnetic (Ga,Mn)As. These models are sufficiently simple that disorder-ladder-sum vertex corrections to the long-wavelength spin-spin response function can be summed to all orders. An important objective of this study is to assess the reliability of practical approximate expressions which can be combined with electronic structure calculations to estimate Gilbert damping in more complex systems.Comment: 10 pages, 10 figures. Submitted to Phys. Rev.

    Observability of counterpropagating modes at fractional-quantum-Hall edges

    Get PDF
    When the bulk filling factor is equal to 1 - 1/m with m odd, at least one counterpropagating chiral collective mode occurs simultaneously with magnetoplasmons at the edge of fractional-quantum-Hall samples. Initial experimental searches for an additional mode were unsuccessful. In this paper, we address conditions under which its observation should be expected in experiments where the electronic system is excited and probed by capacitive coupling. We derive realistic expressions for the velocity of the slow counterpropagating mode, starting from a microscopic calculation which is simplified by a Landau-Silin-like separation between long-range Hartree and residual interactions. The microscopic calculation determines the stiffness of the edge to long-wavelength neutral excitations, which fixes the slow-mode velocity, and the effective width of the edge region, which influences the magnetoplasmon dispersion.Comment: 18 pages, RevTex, 6 figures, final version to be published in Physical Review
    • ā€¦
    corecore