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Observability of counterpropagating modes at fractional quantum Hall edges

U. Zülicke and A. H. MacDonald
Department of Physics, Indiana University, Bloomington, Indiana 47405

M. D. Johnson
Department of Physics, University of Central Florida, Orlando, Florida 32816

~Received 16 January 1998; revised manuscript received 29 April 1998!

When the bulk filling factor isn5121/m with m odd, at least one counterpropagating chiral collective
mode occurs simultaneously with magnetoplasmons at the edge of fractional quantum Hall samples. Initial
experimental searches for an additional mode were unsuccessful. In this paper, we address conditions under
which its observation should be expected in experiments where the electronic system is excited and probed by
capacitive coupling. We derive realistic expressions for the velocity of the slow counterpropagating mode,
starting from a microscopic calculation which is simplified by a Landau-Silin-like separation between long-
range Hartree and residual interactions. The microscopic calculation determines the stiffness of the edge to
long-wavelength neutral excitations, which fixes the slow-mode velocity, and the effective width of the edge
region, which influences the magnetoplasmon dispersion.@S0163-1829~98!02243-7#

I. INTRODUCTION

A two-dimensional~2D! electron system in a strong trans-
verse magnetic field can exhibit the quantum Hall~QH!
effect.1,2 This effect occurs when the electron fluid becomes
incompressible3 at magnetic-field-dependent densities. The
physical origin of the incompressibility, i.e., of an energy
gap for the excitation of unbound particle-hole pairs, is quite
different for the integer and fractional QH effects. In the
integer case, the incompressibility arises from Landau quan-
tization of the kinetic energy of a charged 2D particle in a
transverse magnetic field, while in the fractional case it is a
consequence of electron-electron interactions. In both cases,
however, the only low-lying excitations are localized at the
boundary of the QH sample. In a magnetic field, collective
modes, known as edge magnetoplasmons4 ~EMP!, occur at
the edge of a 2D electron system even when the bulk is
compressible. Outside of the QH regime, however, these
modes have a finite lifetime4 for decay into incoherent
particle-hole excitations and are most aptly described using a
hydrodynamic picture. In the QH regime, provided that the
edge of the 2D electron system is sufficiently sharp,5 the
microscopic physics simplifies and there is no particle-hole
continuum into which the modes can decay. Generalizations
of models familiar from the study of one-dimensional~1D!
electron systems6 can then be used to provide a fully micro-
scopic description of integer7 and fractional8,9 QH edges. In
these models, EMP appear as free Bose particles in the
bosonized description of a chiral 1D electron gas.

In this work, we consider the edge of a 2D electron sys-
tem in the regime where the fractional QH effect occurs, i.e.,
for filling factors n,1 and n equal to one of the filling
factors at which the bulk of the 2D system is incompressible.
The fractional quantum Hall effect is most easily understood
for n51/m, wherem51,3,5, . . . . For these values ofn and
for a confining potential that is sharp enough to prevent edge
reconstruction,10,11 a single branch of bosonized excitations
occurs.12,8 These are EMP modes, which, in this case, have

an especially simple microscopic description. Since the mag-
netic field breaks time-reversal symmetry, EMP modes
propagate along the edge in one direction only; they are chi-
ral. In general, however, the edge can support more than one
branch of chiral edge excitations, and some of these can
propagate in the opposite direction. For example, counter-
propagating modes can occur even at integer filling factors
when an edge reconstruction takes place.11 Here we study in
detail the case of bulk filling factorsn5121/m for which
both12,8 microscopic theory and phenomenological consider-
ations suggest that, even when the edge is sharp, at least one
counterpropagating mode exists in addition to the EMP
mode. For short-range electron-electron interactions, the two
collective modes consist of an outer mode similar to then
51 chiral edge mode, and an inner mode which propagates
in the opposite direction and has hole character, but is oth-
erwise similar to the chiral mode which occurs at the edge of
a n51/m QH system.~See Fig. 1.! Long-range interactions
change the character of the collective modes. In the limit of
strong coupling by long-range Coulomb interactions, the
normal modes that emerge are9,13 a high-velocity mode as-
sociated with fluctuations in the total electron charge inte-
grated perpendicularly to the edge, and a lower-velocity
mode associated with fluctuations in the distribution of a
fixed charge at a particular position along the edge. The two
modes propagate in opposite directions. The higher-velocity
mode is the microscopic realization of the EMP mode for a
sharpn5121/m edge.

The occurrence of a counterpropagating mode with lower
velocity is, perhaps, counterintuitive. No such modes occur,
for example, in hydrodynamic theories of edge normal-mode
structure. Anticipation of a single lower-velocity long-lived
counterpropagating collective mode in the case of sharp
edges is grounded on fundamental notions of the micro-
scopic theory of the fractional QH effect, and on fundamen-
tal notions of the phenomenology used to describe its edges.
Experimental verification for their existence would provide a
powerful confirmation of the predictive power of these theo-
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ries. However, time-domain studies14 of the propagation of
edge excitations at filling factorn52/3 have turned up no
evidence for this mode.

The main focus of the work presented here is to address
properties of the sharpn5121/m edge, with the objective
of guiding future attempts to verify its normal-mode struc-
ture. In Sec. II we discuss the excitation, propagation, and
detection of edge collective modes at an5121/m edge. The
discussion in this section is phenomenological, and starts
from the assumption that the edge charge is composed of
contributions from two coupled chiral Luttinger liquids with
opposite chirality. Such a model can be regarded as a gener-
alization of the Tomonaga-Luttinger~TL! model15 that is
used to describe conventional 1D systems such as quantum
wires or 1D organic conductors. The parameters of the gen-
eralized TL model Hamiltonian, which fix the velocities of
the normal modes and the way in which they are excited and
detected, are derived from a microscopic treatment of the
underlying 2D electron system. This calculation requires a
careful separation of long-range Coulomb and residual con-
tributions to the TL model parameters, explained in Sec. III.
The philosophy of this calculation is similar to that of
Landau-Silin theory16 in which long-range Coulomb and re-
sidual interactions between quasiparticles in metallic Fermi
liquids are carefully separated. We find that two characteris-
tics of the edge structure are most important in determining
the dispersions of the EMP mode and the counterpropagating

mode: the separationd of the inner and outer edges, and a
velocity vJ used to parametrize the stiffness of the edge to
neutral excitations. Evaluations of these parameters for a mi-
croscopic model of a sharpn5121/m edge are presented in
Sec. IV. Numerical results are given for the experimentally
most relevant casen52/3. We conclude in Sec. V with a
discussion of the implications of our results for possible ex-
perimental studies. Some details of our calculations have
been relegated to Appendixes.

II. EDGE WAVE PACKETS AT TWO-BRANCH EDGES

In previous work17 we have presented a detailed theory of
EMP wave-packet dynamics for single-branch fractional QH
edges. Schemes for the excitation and detection of EMP
wave packets were discussed, along with an analysis of the
roles of noise and coupling to phonons of the host semicon-
ductor. In this section we briefly present a generalization of
the most pertinent portions of this paper to the case of
present interest.

We start from the assumption that the total electronic
number density integrated perpendicularly to the edge can be
separated into contributions from the inner and outer edges:
% ( i )(x) and % (o)(x). Herex is the 1D coordinate along the
perimeter of the QH sample, which we take to have lengthL.
We write8,18

% ~ i !~x!5 (
q.0

Aqn~ i !

2pL
~aq

~ i !eiqx1@aq
~ i !#†e2 iqx!, ~1a!

% ~o!~x!5 (
q.0

Aqn~o!

2pL
~aq

~o!e2 iqx1@aq
~o!#†eiqx!. ~1b!

Here,aq
( i ) (aq

(o)) and@aq
( i )#† (@aq

(o)#†) are Bose annihilation
and creation operators for chiral edge modes with 1D wave
vector q at the inner~outer! edge. The values of the filling
factors aren ( i )

ª12n[1/m andn (o)
ª1. The commutation

relations implicit in the identification of creation and annihi-
lation operators follow, in the case of short-range interac-
tions, directly from microscopic considerations19–22,12which
we elaborate on in further detail in Sec. III; see also Appen-
dix B. The different sign of the wave vector associated with
creation operators at the inner and outer edges expresses the
electron character of the outer chiral edge excitations and the
hole character of the inner chiral edge excitations.12

For general interparticle interactions, we do not expect
that the low-energy effective TL Hamiltonian will be diago-
nal in the boson fields associated with inner and outer edges.
The normal modes will be linear combinations of inner and
outer edge modes with coefficients which depend on the ef-
fective interactions between inner and outer edges and vary
from system to system. For the case of strong coupling due
to long-range Coulomb interactions, one of the normal
modes is the EMP, and the other, phononlike, mode will
have linear dispersion at long wavelengths.9,23 The two sets
of creation and annihilation operators are related by a Bogo-
liubov transformation:

FIG. 1. Schematic electron-occupation-number profile at the
edge of a fractional QH sample for filling factorn5121/m. This
picture~see Ref. 12! is based on the use of particle-hole conjugation
~Refs. 19 and 20! to understand the bulkn5121/m fractional QH
effect. The states are most conveniently described in terms of holes
in a filled Landau level. Two fractional QH strips are formed by the
holes: an inner strip with filling factorn ( i )512n[1/m and an
outer strip with filling factorn (o)51. The two strips are separated
by a distanced. The abscissa is the wave vectork parallel to the
edge. In the Landau gauge, a state having wave vectork is localized
at a positiony perpendicular to the edge which is proportional tok.
Here, we measurey from the physical boundary of the sample in-
wards. If the 2D electron system is placed in a coplanar neutralizing
background charge with a sharp edge, the total charge density will
be negative between inner and outer hole strips and positive inside
the outer hole strip. The schematic illustration of the resulting di-
polar strip of charge is unrealistic in its depiction of the variation of
charge density across the edge. The density profiles at the edges of
both hole strips vary on a magnetic-length scale. Accounting for
this in our calculations requires only the introduction of appropriate
form factors.
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S aq
~o!

@aq
~ i !#†D 5S coshuq 2sinhuq

2sinhuq coshuq
D S aq

~pl!

@aq
~ph!#†D , ~2!

where the hyperbolic angleuq is, in general, wave-vector
dependent. When the Coulomb interaction is unscreened,
however, the coefficients become universal at the longest
length scales: coshuq→An (o)/n for q→0.

In the absence of an external perturbation, the diagonal-
ized TL model HamiltonianH0 of the edge is

H05 (
q.0

Eq
~pl!@aq

~pl!#†aq
~pl!1Eq

~ph!@aq
~ph!#†aq

~ph! , ~3!

with Eq
(pl) andEq

(ph) denoting the dispersion relations for the
EMP and phonon modes, respectively. In Sec. III, we derive
explicit expressions for these dispersion relations. Now sup-
pose that an external time-dependent potentialVext(t)
couples electrostatically to the edge. This can be achieved,
e.g., by applying a voltage pulse to a metallic gate close to
the edge.14,17 In general, the coupling of the inner and outer
edges to the external perturbation will differ:

Vext~ t !5u~ t !E
0

L

dx@Vext,o~x!% ~o!~x!1Vext,i~x!% ~ i !~x!# ~4a!

5u~ t ! (
q.0

AqL

2p
$An~o!~V2q

ext,oaq
~o!1Vq

ext,o@aq
~o!#†!1An~ i !~Vq

ext,iaq
~ i !1V2q

ext,i@aq
~ i !#†!%. ~4b!

In this expression, the shape of the pulse is given by the
function u(t), and geometrical details of the coupling be-
tween the gate and the 1D edge densities at the inner and
outer edges are modeled by the functionsVext,i(x) and
Vext,o(x), respectively. The detailed form of these functions
is determined by electrostatics. For practical purposes, it is
usually adequate to assume alocal-capacitor modelwhere
the metallic gate and the part of the edge located in its im-
mediate vicinity form the two ‘‘plates’’ of a capacitor.17 In
such a model, a capacitor which covers the outer edge but
not the inner edge would haveVext,i(x)50. We will see that
excitation of the counterpropagating phonon mode requires
differentiated coupling to the inner and outer edges; the
local-capacitor model suggests that this could be achieved by
arranging for an excitation gate which covers only the outer
part of the edge region. Alternately, a side-gate geometry can
also lead to stronger coupling to the outer portion of the edge
region.

Given the quadratic edge Hamiltonian, it is possible to
solve the time-dependent Schro¨dinger equation explicitly for
H5H01Vext(t) with general pulse shapeu(t) as detailed in
Ref. 17. Wave packets of edge modes can be engineered by
appropriately adjusting the characteristics of the voltage

pulse.17 Wave packets with narrow wave-vector distributions
can be generated by repeating a length-Texc pulse N.1
times.

One way to observe the time evolution of the charge dis-
turbance created by the external perturbation is to measure
the chargeQ(t) that is induced by evolving wave packets on
metallic gates situated close to the edge. In general, the gate
will respond differently to charge located at the inner and
outer edges:

Q~ t !5E
0

L

dx@Vdet,o~x2x0!^% ~o!~x,t !&

1Vdet,i~x2x0!^% ~ i !~x,t !&#, ~5!

wherex0 is the position~along the edge! of the observing
gate, and angular brackets^ & denote a thermal average. The
functionsVdet,i(x) @Vdet,o(x)# model the coupling of the de-
tecting gate and the 2D electron system, which, we assume,
can be qualitatively understood using the local-capacitor
model. An explicit calculation following the formalism of
Ref. 17 yields the result that there are two contributions to
the induced charge:Q(t)5Q(pl)(t)1Q(ph)(t), corresponding
to the EMP and phonon edge wave packets:

Q~pl,ph!~ t !52 ReH (
q.0

Qq
~pl,ph!~ t !exp@ i ~6qx02tEq

~pl,ph!/\!#J . ~6!

In the small-q limit, for unscreened Coulomb interactions, we find that the Fourier components are given by

Qq
~pl!~ t !5

qL

2pn
@Vq

ext,o2~12n!Vq
ext,i #@V2q

det,o2~12n!V2q
det,i #

2 i

\ E
2`

t

dtu~t!exp@ i tEq
~pl!/\#, ~7a!

Qq
~ph!~ t !5

qL

2pn
~12n!@Vq

ext,o2Vq
ext,i #@V2q

det,o2V2q
det,i #

2 i

\ E
2`

t

dtu~t!exp@ i tEq
~ph!/\#. ~7b!
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From Eqs.~7! we can deduce how the excitation and detec-
tion of the two counterpropagating wave packets depend on
the device parameters. To create and observe thephonon
wave packet, both exciting and observing gates must couple
differently to the inner and outer edges. This condition prob-
ably requires that the metallic gates be positioned with an
accuracy better thand, the distance between the inner and
outer edges. The relative amplitudes of EMP and phonon
wave packets can be inferred from Eqs.~7! as well: for
Vext,i(x)5Vdet,i(x)50, e.g., the amplitude of the phonon
wave packet is smaller by a factor of (12n) than the ampli-
tude of the EMP wave packet. This is probably the largest
relative amplitude which can be achieved. The group veloci-
ties of the phonon and EMP wave packets will generally be
quite different:

v ~pl,ph!5
1

\

dEq
~pl,ph!

dq
U

q5q̃~pl,ph!

, ~8!

where q̃(pl,ph) is the median wave number of the superposi-
tion of the modes forming the EMP and phonon wave pack-
ets. ~See Sec. III for explicit expressions for the dispersion
relationsEq

(pl) andEq
(ph) . Typical values for the velocities are

given in Sec. V.! Since both wave packets are created by the
same external voltage-pulse characteristics, we know17 that
Eq̃(pl)

(pl)
5Eq̃(ph)

(ph)
52p\/Texc, which in turn allows us to predict

that the width~in real space! of the phonon wave packet is
smaller by a factor of the order ofv (ph)/v (pl) than the width
of the EMP wave packet.

III. SEPARATION OF CONTRIBUTIONS TO THE 1D
HAMILTONIAN

In this section, we develop a framework which reduces
the task of determining generalized-TL-model parameters to
a calculation of two microscopic quantities. The latter deter-
mine the EMP and edge-phonon dispersion relations and the
hyperbolic mixing angleuq of Eq. ~2!.

We consider a semi-infinite cylindrical QH sample which
extends from the edge neary50 to ` in the ŷ direction and
satisfies periodic boundary conditions in thex̂ direction with
0<x<L. This geometry is convenient for calculations, and
the results we obtain are readily applied to experimentally
realistic geometries. It is convenient to use the Landau gauge
for the single-particle basis states that describe the motion of
a 2D charged particle in a uniform transverse magnetic field
B. The Landau-gauge basis states factor into a plane wave
with 1D wave vectork, dependent on thex coordinate par-
allel to the edge, and a harmonic-oscillator orbital of widthl
centered at2kl2 and dependent on they coordinate perpen-
dicular to the edge. HerelªA\c/ueBu denotes the magnetic
length. The proportionality between the 1D wave vector par-
allel to the edge and spatial displacement perpendicular to
the edge, in conjunction with the geometry of our QH
sample, implies that, for the many-particle ground state and
its low-lying excitations, single-particle states withk beyond
a maximum valuekF0 will be occupied with negligible prob-
ability. It will be convenient for us to exploit this property by
working in a truncated many-particle Fock space which in-
cludes only single-particle states withk<kF0 . We choose

the zero for they coordinate such that a state with labelk has
its y-dependent orbital centered aty5(kF02k) l 2. We use
the simplest possible microscopic model which will produce
a sharp edge for the 2D electronic system by taking the elec-
trons to be confined by a coplanar neutralizing positive back-
ground. To be specific, we take a background which would
exactly cancel the electron charge density if each electronic
orbital were occupied with probability 121/m out to the
edge. As we explain later, the electronic system is drawn in
at the edge, which permits us to letkF0 coincide with the
edge of the positive background.

When edge effects are neglected, the many-particle
Hamiltonian truncated to the lowest Landau level is exactly
particle-hole symmetric. It follows that the ground state with
n5121/m is precisely the particle-hole conjugate of the
ground state atn51/m.19,20,3Particle-hole symmetry is bro-
ken at the edge of the system. It has been conjectured12 that
the ground-state electronic structure at the edge is formed by
the particle-hole conjugate of an51/m fractional Hall state
for holes, which is embedded into a filled-Landau-level state
for electrons, which is truncated atkF0 . For sharp edges,
numerical studies support this view.24–28 The calculations
presented here provide further insight into the consistency of
this scenario. In this paper, we find it convenient to describe
edge states of an5121/m QH sample in the language of
holes. The ground state then consists of holes which have
phase-separated into an inner strip,y( i )<y,`, which is in
the incompressible state with filling factorn ( i )512n
[1/m, and an outer strip with holes present for 0[y(b)<y
<y(o) with hole filling factorn (o)51. For y(o),y,y( i ), no
holes are present, i.e., the electron orbitals are filled.29 As-
suming overall charge neutrality,y(o) and y( i ) are not inde-
pendent, and the state is completely characterized by the
separationd between the inner and outer hole strips:

d[y~ i !2y~o!5
n

12n
@y~o!2y~b!#[

n

12n
y~o!. ~9!

For d50, the outer strip is absent, and the system is strictly
neutral locally. Ford.0, the sample is stillglobally neutral
because of the presence of the uniform neutralizing back-
ground, but a deviation from local neutrality in the form of a
dipolar strip of charge exists; see Figs. 1 and 2~a!. This
ground-state configuration is still 1D locally neutral, by
which we mean that, at any fixed positionx along the edge,
the charge density integrated perpendicularly to the edge
yields zero. Note that, in this hole language, charge fluctua-
tions are possible only aty( i ) andy(o). The outer edge of the
outer hole strip aty5y(b)[0 originates from the truncation
of the Hilbert space in which we perform the particle-hole
conjugation and doesnot support physical excitations.

Phenomenological8 and microscopic22 considerations for
the noninteracting case have established that the excitations
at a chiral QH edge can be described as the excitations of a
chiral 1D electron system. This is obvious for a filling factor
equal to 1, because a filled Landau level is equivalent to a 1D
Fermi sea.30 But even more generally, for QH systems with
simple filling factors of the form 1/m with m odd, the low-
energy excited states are in one-to-one correspondence to the
low-lying states of a chiral 1D Fermi gas.31,22 It can be ex-
pected that, in the chiral system, the character of the low-
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lying excited states remains unchanged in the presence of
~even long-range! interactions.32 As seen above, application
of particle-hole conjugation to describe the QH effect for
systems at filling factorn5121/m leads to an edge-
electronic structure with two chiral edges; the inner edge at
y( i ) ~i.e., the outer edge of the hole system that is in the
n ( i )512n[1/m QH state! and the outer edge aty(o) ~i.e.,
the inner edge of the hole system that is in then (o)51 filled-
Landau-level state!. The validity of our description of the
edge of such a QH sample in terms of a generalized TL
model rests on the assumption that, even in the presence of
long-range interactions, the low-energy scattering processes
conserve the number of particles at the inner and outer edges
separately.

Our calculation of the parameters of the generalized-TL
effective Hamiltonian is similar in spirit to the Landau-Silin
theory16 for charged Fermi liquids. In a metal, interactions
between quasiparticles, especially at small scattering angles,
can be totally dominated by the direct Coulomb interaction.

However, for some physical properties, e.g., the spin mag-
netic susceptibility, the Coulomb interaction cancels out,
leaving a dependence only on the weaker residual interac-
tions which reflect correlations between underlying elec-
tronic degrees of freedom. Evaluation of the Fermi-liquid
parameters that determine the spin susceptibility requires that
the direct Coulomb interaction be carefully separated from
exchange and correlation contributions. Our main aim here is
to estimate the phonon-mode velocity, which would vanish if
only Coulomb interactions between 1D charge densities were
included in the generalized TL model Hamiltonian. In order
to accurately evaluate the important residual contributions to
the effective interactions in the model, we introduce an arti-
ficial model in which long-range Coulomb interactions are
eliminated by adjusting the background charge to maintain
1D local charge neutrality. The energy,dE, of a state with a
given 1D charge density for the physical case of a fixed
background charge differs from the energy of the fictitious
1D locally neutral system,dẼ, because of the interactions
between electrons and the change in background, and be-
cause of the self-interaction energy of the artificial change in
background. For details, see Appendix A. Lettingdn2D(rW) be
the change relative to the ground state of the 2D electron
density anddnbg

2D(rW) be the change in the background density
necessary in the fictitious 1D locally neutral system, we find
that

dE5dmbg1dẼ1dEC, ~10a!

with the definition

dECª
e2

e E d2rd2r 8

urW2rW8u
dnbg

2D~rW !Fdn2D~rW8!2
1

2
dnbg

2D~rW8!G ,
~10b!

and a termdmbg contributing to the chemical potential which
is irrelevant for our considerations to follow and will be
dropped from now on.~See Appendix A.! Here,e character-
izes the dielectric environment of the 2D electron system.33

The contributiondẼ@dn2D(rW)# is the excitation energy in the
1D locally neutral artificial system, and we will subsequently
refer to it as the neutral term; it contains only short-range
interaction contributions. The long-range Coulomb interac-
tion is contained indEC, the ‘‘Coulomb term.’’ In the fol-
lowing subsections, we derive expressions for the two corre-
sponding contributions to the Tomonaga-Luttinger model
Hamiltonian which depend on two microscopic parameters
characterizing the edge. Section IV describes the evaluation
of these parameters.

A. Edge-mode energies: Coulomb term

To evaluate the Coulomb termdEC for an edge excita-
tion, we have to find the 2D charge distributionsdn2D(rW)
and dnbg

2D(rW) that correspond to the 1D charge fluctuations
% ( i )(x) and% (o)(x) associated with edge waves at inner and
outer edges. Most generally, we can write

FIG. 2. For a quantum Hall system with bulk filling factorn
5121/m, the ground-state charge-density profile at a sharp edge
will have the dipolar strip that is illustrated schematically in Fig. 1.
However, at any point along the edge, the 1D charge density in the
ground state, obtained by integrating the 2D charge density along
the coordinate perpendicular to the edge, is zero. At long wave-
lengths, parameters of the generalized Tomonaga-Luttinger model
for the edge are dominated by the long-range interactions between
1D charge-density fluctuations. On the other hand, the chiral-
phonon-mode velocity is determined by smaller residual interac-
tions. In order to determine these accurately, we introduce a ficti-
tious model system in which the edge of the background charge is
adjusted to maintain zero 1D charge density at each point along the
edge. For example, when a hole is added at the inner edge@~a!#, the
background charge is reduced by moving its outer edge as illus-
trated in~b!. Similarly, when the outer edge is moved outward, the
background edge is also moved outward.~See text.! Here we mea-
sure densities in units of 1/(2p l 2).

13 782 PRB 58U. ZÜLICKE, A. H. MacDONALD, AND M. D. JOHNSON



dn2D~rW !5% ~ i !~x!F ~ i !~y2y~ i !!1% ~o!~x!F ~o!~y2y~o!!,

~11a!

dnbg
2D~rW !5@% ~ i !~x!1% ~o!~x!#F ~b!~y2y~b!!. ~11b!

The structure of the transverse density profile at the inner
and outer edges as well as at the physical boundary of the
sample enters through the form factorsF ( i )(y), F (o)(y), and
F (b)(y), respectively. Using the Fourier representation, and
defining the coupling functions

Fq
~rs!

ª

e2

e
2E dydy8K0~quy2y8u!

3F ~r !~y2y~r !!F ~s!~y82y~s!!, ~12!

where the indicesr ,sP$ i ,o,b% and K0 denotes a modified
Bessel function of zeroth order, we express the Coulomb
term in a form which will be convenient for identifying its
contribution to the TL model15 Hamiltonian:

dEC5
2p\

L (
q.0

lq@%q
~ i !1%q

~o!#@%2q
~ i ! 1%2q

~o! #

1
2p\

L (
q.0

vC@%q
~o!%2q

~o!2%q
~ i !%2q

~ i ! #. ~13!

The parameterslq andvC have the units of velocity and are
given by

2p\lq5Fq
~bi !1Fq

~bo!2Fq
~bb! , ~14a!

2p\vC5Fq
~bo!2Fq

~bi ! . ~14b!

~In most cases, the wave-vector dependence ofvC will be
unimportant.! In Eq. ~13!, we have separateddEC into a term
dependent only on the total 1D charge fluctuation at the edge
and a term which occurs because of the spatial separation of
inner and outer edges. The first term in Eq.~13! corresponds
to the familiar4 EMP mode, which becomes one of the edge
normal modes if long-range Coulomb interaction is
present9,23 ~see also Sec. III C below!. In that case, the sec-
ond term in Eq.~13! which involves the velocityvC becomes
important only at large wave vectors. Note that, ifdEC were
the only contribution to the edge excitation energy, the coun-
terpropagating phonon mode would have zero velocity; see
Sec. III C below. In the small-q limit, Eq. ~12! simplifies to

Fq
~rs!52

e2

e
2@ ln~4a2ql !1D~rs!#, ~15!

where a5AeC/8'0.47, with C50.577 . . . being Euler’s
constant, and

D~rs!5E dydy8ln~ uy2y81y~r !2y~s!u/ l !F ~r !~y!F ~s!~y8!.

~16!

@Some analytical details of the functionD (rs) are known30 for
the special case ofF (r )(y)5F (s)(y)5exp(2y2/l2)/(Ap l ).# In
general, Eqs.~14! specialize in the small-q limit to

lq52
e2

e\

1

p
lnS 16a3Yl~d!

12n

n2

d2

l
qD , ~17a!

vC52
e2

e\

1

p
ln@YC~d!~12n!#. ~17b!

The fact thatlq→` for q→0 results from the long range of
the Coulomb interaction. Thed-dependent factorsYl(d) and
YC(d) account for the details of the transverse density pro-
file. Both approach unity ford* l . The microscopic param-
eterd must be determined to fix the TL model parameters. Its
value for filling factorn52/3 is calculated in Sec. IV, where
we find d2/3'1.7l . This value is consistent with numerical
studies28 performed for systems with up to 50 electrons. We
determined the correction factorsYl(d2/3)'YC(d2/3)
'0.86. See Appendix C for that calculation and a detailed
discussion of the transverse density profile for edge excita-
tions. Our result@Eq. ~17a!# for the EMP dispersion relation
is similar to the one obtained in hydrodynamic theories4 if
we interpretd2/ l as the effective width of the edge region.

B. Edge-mode energies: Neutral term

We now evaluate the neutral termdẼ in Eq. ~10a!. This is
the energy of an edge excitation in a fictitious system where
the neutralizing background is adjusted so that the charge
density integrated perpendicularly to the edge vanishes at
any fixed point along the edge. We call this property ‘‘1D-
local neutrality.’’ With excitations present, the inner and
outer edges move to new positionsỹ( i ),ỹ(o), with a new
separationD5 ỹ( i )2 ỹ(o). In the fictitious system where 1D
local neutrality is maintained, the background charge ends
not aty(b)50 but instead at some new positionỹ(b). When
the density of holes varies withx, all of ỹ( i ),ỹ(o),ỹ(b),D will
also depend onx. Requiring 1D local charge neutrality at
each positionx along the edge yields

D~x!5~m21!@ ỹ~o!~x!2 ỹ~b!~x!#,

exactly like Eq.~9!. The neutral-edge system is completely
characterized byD(x), and the energydẼ can be expressed
as a functional ofD(x), or, more conveniently, as a func-
tional of @D(x)2d# whered is the ground-state separation
of the inner and outer edges. In order to quantize this energy
functional, we must expressD(x) in terms of the charge-
density contributions from inner and outer edges. The rela-
tion between the deviation ofD(x) from its ground-state
valued and the 1D charge fluctuations localized at the inner
and outer edges can be derived straightforwardly; it is

D~x!2d522p l 2F% ~o!~x!1
1

12n
% ~ i !~x!G . ~18!

Equation~18! is an exact statement and follows from the fact
that edge waves at the inner~outer! edge correspond to rigid
deformations of the 2D ground-state density profile for the
inner ~outer! QH strip. See Appendix C for details. When
% ( i )(x)52% (o)(x)/m, both edges suffer identical displace-
ments and the distance between them is not altered.
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As the configuration withD(x)[d is the ground state, the
zeroth- and first-order terms in the functional expansion of
dẼ with respect to@D(x)2d# vanish. Unlike the Coulomb
term, this contribution to the energy will be local for long-
wavelength excitations, allowing us to parametrize the coef-
ficient of the quadratic term in terms of a single parameter,
vJ , with units of velocity:

dẼ5
vJ

2

12n

n

\

2p l 2E dxFD~x!2d

l G2

. ~19!

Expressing the distance between inner and outer edges in
terms of inner and outer edge charge densities using Eq.~18!
and Fourier transforming allow us to write the short-range
term in a convenient TL form:15

dẼ5
2p\

L
vJ(

q.0
H 12n

n
%q

~o!%2q
~o!1

1

n~12n!
%q

~ i !%2q
~ i !

1
1

n
@%q

~o!%2q
~ i ! 1%q

~ i !%2q
~o! #J . ~20!

We show in Sec. IV how to determine the velocityvJ . An
analytical result~valid for d@ l ) is

vJ52
e2

e\

1

p
@n ln~n!1~12n!ln~12n!#. ~21!

Our calculation~outlined in Sec. IV and detailed in Appen-
dix B! shows, however, that the ground-state separationd2/3
of the inner and outer edges for the case ofn52/3 is not
particularly large, so corrections to the asymptotic formula
@Eq. ~21!# have to be taken into account. As an improved
result forn52/3, we findvJ'0.24e2/(e\).

C. Dispersion of EMP normal modes

The low-energy, small-wave-vector effective 1D Hamil-
tonian for the edge at filling factorn5121/m can be written
in the form of a TL Hamiltonian;15 it is given by

dEC1dẼ→HTL , ~22!

with the termsdEC and dẼ taken from Eqs.~13! and ~20!,
respectively. Equation~22! signifies that we obtain the TL
Hamiltonian from our energy calculations by considering the
1D density fluctuations as operators which have the appro-
priate chiral-Luttinger-liquid commutation relations.8 A
straightforward Bogoliubov transformation9 @Eq. ~2!# to the
normal modes yields the diagonal Hamiltonian of Eq.~3!. In
the small-wave-vector limit~wherelq@vJ ,vC), we find for
the dispersions of the EMP and phonon normal modes

Eq
~pl!5\qnlq , ~23a!

Eq
~ph!5\qvJ . ~23b!

@The expression forlq in its most general form is given in
Eq. ~14a!. With our approximations used, we find Eq.~17a!.#
We see that the energy of the EMP normal mode is due
primarily to the Coulomb interaction; the separationd of the
inner and outer edges in the ground state enters prominently
because it determines the effective width of the edge region.

The energy of the phononlike mode, however, is naturally
given by the velocityvJ , because that quantity measures the
energy of excitations that preserve 1D local neutrality in the
system.

IV. EVALUATION OF EDGE WIDTH AND
PHONON-MODE VELOCITY

We have shown that then5121/m sharp-edge Hamil-
tonian can be expressed in terms of two characteristic param-
eters: the ground-state separationd between inner and outer
edges, and the velocityvJ . In this section, we determine
both quantities simultaneously by calculating the energy
change due to a hole transfer from the inner to outer incom-
pressible strips at a neutral edge.

Consider a configuration that differs from the ground state
only by the transfers of an arbitrary number of holes between
inner and outer strips. Such a state is 1D locally neutral, and
its charge profile perpendicular to the edge looks similar to
that of the ground state. However, we allow the separation of
the inner and outer edges ([yini

( i )2yini
(o)) to differ from the

valued for the ground state.~See Fig. 3.! The energy of such
an excited state is given bydEini ([dẼini because no ad-
justment of the background is necessary to ensure 1D local
neutrality!. If yini

( i )2yini
(o) is not too different fromd, we can

write

dEini[dẼini5
vJ

2

12n

n

\L

2p l 2F @yini
~ i !2yini

~o!#2d

l G2

, ~24!

which is a specialization of Eq.~19! to the case of an exci-
tation with a transverse density profile that is uniform along
the edge.

Now we transfer one extra hole from the inner edge to the
outer one~see Fig. 3!. This changes the separation of the two
edges by

FIG. 3. The process we consider to calculate the parametersd
andvJ . We consider configurations in which the holes have phase-
separated into two incompressible strips as in the ground state at
filling factor n5121/m, but allow the separationyini

( i )2yini
(o) of the

two strips to differ fromd ([ the strip separation in the ground
state!. We imagine then that a hole is transferred from the edge of
the inner strip to the edge of the outer strip, preserving the 1D local
neutrality of the reference state. No adjustment of the background is
necessary, and the overall shape of the 1D density profile is similar
to its shape in the ground state. We are able to extract the values of
d andvJ from the energy change produced by the hole transfer.
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DD~x!5
n

12n

2p l 2

L
. ~25!

For the corresponding energy change, we find

D~dEini!'
\vJ

l

@yini
~ i !2yini

~o!#2d

l
, ~26!

where we neglected a term that is small if the relation

@yini
~ i !2yini

~o!#2d

l
@2p

n

12n

l

L

holds. As the perimeterL of the edge in typical QH samples
is usually many magnetic lengths, such an assumption is
valid except for an extremely narrow interval around the
point yini

( i )2yini
(o)5d.

To determine the parametersd and vJ , we performed a
microscopic calculation of the energy on the left-hand side of
Eq. ~26!. This turns out indeed to yield an expression of the
form of the right-hand side, with suitable choices of the pa-
rametersd andvJ . The equilibrium separation between inner
and outer edges is reached when the energy change associ-
ated with hole transfer vanishes. A summary of the calcula-
tion details is relegated to Appendix B. Here we explain the
main ingredients and report numerical results for filling fac-
tor n52/3, which are summarized in Fig. 4.

The energy required to perform the transfer of a hole from
the inner edge to the outer one has several contributions.
Some are conveniently expressed in terms ofz(g), the en-
ergy per particle in a homogeneous QH state of filling factor
g in the presence of a uniform coplanar neutralizing
background.34 Hartree and exchange-correlation contribu-
tions to the energy change are treated separately in the cal-
culation. The essence of the energetics at the edge can be
understood by the following simple argument. First we re-
move a hole from the edge of the inner strip which is in a
fractional QH state of filling factor 12n. The loss of
exchange-correlation energy isuz(12n)u. Adding this hole
to the edge of the outer strip gives a gain in exchange-
correlation energy which is close touz(1)u, provided that the
width of the outer strip is larger than the magnetic length.
~Since the outer strip is a simple filled-Landau-level state, it
is easy to incorporate finite-thickness corrections to its addi-
tion energy, and we do so as detailed in Appendix B.! Since
uz(12n)u,uz(1)u, there is a net gain inexchange-
correlation energy when transferring holes from the inner
strip to the outer one in that situation. This gain is balanced
by the increase inelectrostaticenergy that comes about due
to the existence of the dipolar strip of charge; see Fig. 1. The
hole that is being transferred is brought closer to the outer
part of the dipolar strip which electrostatically repels holes.
The separation of the two edges in the state where the gain in
exchange-correlation energy for the hole transfer is exactly
offset by the loss in electrostatic energy is the ground-state
separationd. The electrostatic energy cost of hole transfer
increases linearly withd for d. l . Comparing with Eq.~26!,
we see that, in this approximation, the slope of the curve for
the electrostatic contribution to the transfer energy is\vJ / l .

This simple picture requires a number of modifications
which are detailed in Appendix B but, as illustrated forn
52/3 in Fig. 4, these have little quantitative importance.

V. DISCUSSION OF EXPERIMENTAL IMPLICATIONS

We have determined the conditions under which it is pos-
sible to excite and observe two counterpropagating EMP
wave packets at the edge of a QH sample that is at filling
factor n5121/m. It is important that the geometry of the
sample allows for an external potential that is different at the
positions of the inner and outer edges. According to the cal-
culation of the preceding section, the separationd of the two
strips for filling factorn52/3 is d2/3'1.7l . In typical mag-
netic fields, this corresponds tod2/3;20 nm. For a top gate,
significant differential coupling to inner and outer edges
would require that the distance to the gate not be too much
larger than;20 nm and that its edge be positioned relative
to the QH edge with an accuracy of better than;20 nm.
Both these conditions appear to be realizable.

FIG. 4. Energy balance for the transfer of a hole from the inner
edge to the outer one~see Fig. 3!. The curves are calculated for a
filling factor n52/3. The electrostatic energy required to transfer
the hole~solid curve! is the work performed against the external
potential stemming from the dipolar strip of charge; see Fig. 1.
Details of its evaluation are given in Appendix B. This portion of
the energy is linear in the separationyini

( i )2yini
(o) of the inner and

outer edges for separations larger than the magnetic length. The
exchange-correlation energy gain is given approximately by
uz(1)u2uz(1/3)u. Corrections to the simple expression for the
exchange-correlation energy gain detailed in Appendix B become
important at smaller interedge distance. The full result for the
exchange-correlation energy gain is given by the dashed curve. The
point where the two curves cross gives the equilibrium edge sepa-
ration within our variational two-strip model. The approximations
used in our calculation of the exchange-correlation energy are not
valid for strip separations much smaller than the magnetic lengthl ,
and the crossing of the curves at the smaller value ofyini

( i )2yini
(o) is

unphysical. The other crossing occurs in a regime where our ap-
proximations apply. From the point of crossing we conclude that
d'1.7l . At this value ofd, the exchange-correlation energy gain is
nearly constant and the electrostatic-energy-cost curve is nearly lin-
ear. From its slope we obtainvJ'0.24e2/(e\).
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The result we have obtained for the EMP wave-packet
group velocity is

v ~pl!52n
e2

e\

1

pF lnS 16a3Yl~d!
12n

n2

d2

l
q̃~pl!D 11G ,

~27!

whereq̃(pl) is the characteristic wave vector of the dominant
charge fluctuation in this wave packet. Specializing Eq.~27!
to the case of the dielectric environment of typical 2D
electron systems in GaAs,33 taking a QH sample with
n52/3, and assumingq̃(pl)L!L/ l , we find that v2/3

(pl);
703 ln@L/(50l )# mm/ns. The phonon wave packet moves in
a direction opposite to that of the EMP wave packet, and has
linear dispersion with velocityv (ph)[vJ . For n52/3, we
have found thatvJ'0.24e2/(e\). In typical samples, we
therefore havev2/3

(ph);70 mm/ns. The ratiov2/3
(pl)/v2/3

(ph) turns
out to be of the order of ln@L/(50l )#; this number is;8 for
the experiment reported in Ref. 14. The relative width of the
two wave packets is inversely proportional to the ratio of
their respective velocities; the phonon wave packet will
therefore be much more narrow~in its 1D extension along
the edge! because it is much slower than the EMP wave
packet. We expect the numerical group-velocity estimates
given here to be realistic for the case of a sharp edge with an
external potential sufficiently similar to that produced by the
coplanar neutralizing charge used in these microscopic cal-
culations. It appears likely to us that sharp edges will occur
only in specially prepared QH samples, for example in those
prepared using a cleaved-edge overgrowth technique.5 We
remark that this technique appears to be compatible with
side-gate-based capacitive coupling which we believe will
produce the differentiation necessary to excite the phonon
modes. The microscopic formalism developed in this work
can, in principle, be elaborated to model the details of a
specific sample and arrive at precise predictions for the rela-
tive velocities of the two modes. The microscopic electronic
structure at smooth edges is presently not well understood,35

even for the simpler case where the bulk filling factor is an
integer. Nevertheless, it appears clear that, for very smooth

edges, 1D electron-gas models are not appropriate. The ex-
citation spectrum will have many collective modes,36 and
each of these will, in general, decay into incoherent particle-
hole excitations at a finite rate. If a sample with a sharp edge
can be fabricated, the present calculations suggest that group
velocities of the modes are slow enough to permit the use of
capacitive coupling to detect wave-packet evolution, and fast
enough to permit several orbits around a macroscopic sample
to occur before the wave packet is dissipated through its
coupling to bulk phonon modes of the host semiconductor.17
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APPENDIX A: LANDAU-SILIN-TYPE SEPARATION
OF COULOMB AND SHORT-RANGE INTERACTIONS

In this section, we show briefly how the separation of the
Coulomb and short-range pieces of the interaction leads to
Eqs.~10!.

We start from the ground state of an edge which has a
density profile as depicted schematically in Fig. 1. Our goal
is to find the energydE it costs to make an excitation that
leads to a deviationdn2D(rW) from the ground-state density
profile. To separate long-range and short-range contributions
to dE, we relate our physical system to a fictitious system
which has only short-range forces, because any excitation
dn2D(rW) is simultaneously followed by an adjustment of the
background charge densitydnbg

2D(rW) that restores 1D local

neutrality. Obviously, the amount of energydẼ that it takes
to make an excitationdn2D(rW) in the fictitious 1D-locally
neutral system differs fromdE by the energy necessary for
adjusting the background charge:

dẼ5dE1
e2

e E d2rd2r 8
1

urW2rW8u
dnbg

2D~rW !H 1

2
dnbg

2D~rW8!1nbg
2D~rW8!2dn2D~rW8!2n2D~rW8!J . ~A1!

The first term in the curly brackets of Eq.~A1! comes from
the self-interaction of the adjusted piece of the background,
the second term is the interaction energy of the adjusted
background piece with the ground-state background-charge
distribution denoted bynbg

2D(rW), the third one is the interac-
tion energy of the charged electronic excitation with the ad-
justed piece of the background, and the last term comes from
the interaction of the electronic ground-state charge distribu-
tion n2D(rW) with the adjusted background piece. We arrive
readily at Eqs.~10! if we define

dmbgª
e2

e E d2rd2r 8

urW2rW8u
dnbg

2D~rW !@n2D~rW8!2nbg
2D~rW8!#.

~A2!

The termdmbg, being linear in the charge distribution re-
lated to the excitation, contributes only to the chemical po-
tential and does not affect the generalized TL model Hamil-
tonian because the latter is derived from terms indE that are
quadratic indn2D anddnbg

2D .
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APPENDIX B: CALCULATION OF SHARP-EDGE
CHARACTERISTIC PARAMETERS

We start with the Hamiltonian of 2D interacting electrons
in the lowest Landau level. After performing the transforma-
tion of particle-hole conjugation, we work consistently in the
Fock space ofholeswith single-hole states available fork
<kF0 . This truncation of the Hilbert space is permitted as
long as states withk equal to or in excess ofkF0 are always
occupied by holes. The validity of this assumption for states
close to the sharp-edge ground state can be verified at the
end of the calculation.

Particle-hole conjugation can be performed easily using
the formalism of second quantization. Starting from any op-
erator expressed in terms of electron creation and annihila-
tion operators, it is possible to derive its particle-hole conju-
gate by replacing the electron’s creation operatorck

†

~annihilation operatorck) by the hole’s annihilation operator
hk ~creation operatorhk

†). Consider the Hamiltonian for in-
teracting electrons in the lowest Landau level with an exter-
nal confining potential present:

H5H01H int, ~B1a!

H05(
k

«kck
†ck, ~B1b!

H int5
1

2L (
k,p,q

Vq~k2p!ck1q
† cp

†cp1qck . ~B1c!

The single-electron dispersion«k is due entirely to the exter-
nal potential confining the electrons in the QH sample, be-
cause all electrons in the lowest Landau level have the same
kinetic energy irrespective of their quantum numberk. We
choose the confining potential to be due to a uniform back-
ground charge that would exactly neutralize the electron
charge if each lowest-Landau-level orbital were occupied
with probability n5121/m:

«k52n (
p<kF0

V0~k2p!. ~B2!

Here,Vq(k2p) is the two-body matrix element of the Cou-
lomb interaction in the Landau-gauge representation of
single-particle states in the lowest Landau level. Explicit ex-
pressions forVq(k2p) can be found, e.g., in Refs. 11 and
17. Replacing the electron operators by hole operators and
normal ordering3 yields

H* 5Eh1Hh
01Hh

int , ~B3a!

Eh5(
k

S «k1
1

2
jkD , ~B3b!

Hh
052(

k
~«k1jk!hk

†hk , ~B3c!

Hh
int5

1

2L (
k,p,q

Vq~k2p!hk
†hp1q

† hphk1q . ~B3d!

The constant term (Eh) in this hole Hamiltonian is unimpor-
tant, but the correction to the single-particle energyjk plays
an essential role in the edge physics:

jkª
1

L(
p

@V0~k2p!2Vk2p~0!#. ~B4!

We now evaluate the energy of states where the holes
form an incompressible bulk state with filling factor 12n in
the strip for whichy( i )<y,` and form a filled-Landau-
level state in the strip for which 0<y<y(o). The inner strip
contributes nonzero occupation numbers fork<kF

( i ) . Except
close to the edge,37,38these states are occupied with probabil-
ity 12n. The outer strip contributes nonfluctuating integer
occupation numbers for states withkF

(o)<k<kF0 . Note that
we have adopted a notation wherekF

(o) is the inner edge of
the outer hole strip. Low-energy excitations can occur at this
edge. In contrast,kF0 is the outer edge of the outer hole strip.
This edge is formed by the Hilbert-space truncation and does
not support physical excitations. Our calculations will dem-
onstrate that states of this type are locally stable. We cannot
envisage alternatives and believe that these states, and their
edge-wave excitations, are the only states in the low-energy
portion of the Hilbert space for sharp edges.

Since the states we consider have fixed numbers of par-
ticles in inner and outer strips, it is useful to separate the hole
Hamiltonian into parts as follows:

H* 5Eh1H ~ i !1H ~o!1dH. ~B5a!

The termH ( i ) describes the inner strip of interacting holes
that is assumed to be confined by a uniform background
neutralizing for holes @density: (12n)/(2p l 2)] extending
over the intervaly( i )<y,`:

H ~ i !5 (
k<kF

~ i !
«k

~ i !hk
†hk1

1

2L (
k,p<kF

~ i !

q

Vq~k2p!hk
†hp1q

† hphk1q

~B5b!

with

«k
~ i !
ª2~12n!

1

L (
p<kF

~ i !
V0~k2p!.

This strip is presumed to be in the fractional-QH state at
filling (1 2n). As it is infinite, the energy per particle in the
inner strip assumes its thermodynamic value34 z(12n)'
20.41e2/(e l ). The contributionH (o) is for the outer strip of
holes, for which a neutralizing background with density
1/(2p l 2) is assumed to extend in the region 0<y<y(o).
That strip is in the QH state with filling factor equal to 1.

H ~o!5 (
k>kF

~o!
«k

~o!hk
†hk1

1

2L (
k,p>kF

~o!

q

Vq~k2p!hk
†hp1q

† hphk1q

~B5c!

and
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«k
~o!
ª2

1

L (
p>kF

~o!
V0~k2p!.

The states we consider have no fluctuations in the quantum
numbers on whichH (o) operates. Since the Hartree interac-
tion is canceled by the background, the contribution ofH (o)

to the energy is simply the exchange energy of the occupied
orbitals in the outer strip.

With the termsH ( i ) and H (o) defined above, Eq.~B5a!
constitutes the definition ofdH. The latter encompasses one-
body terms, including the part from the external potential
due to residual background charge not accounted for in
H ( i )1H (o), and two-body terms coming from interactions
between holes from different strips. Theq50 interaction
terms can be grouped with the one-body term. The one-body
contribution todH also contains the exchange contribution
to jk . In total, we have

dH5dH1-body
eff 1dH2-body

qÞ0 , ~B6a!

dH1-body
eff 5(

k
d«khk

†hk , ~B6b!

where

d«k5d«k
H1d«k

F , ~B6c!

d«k
H
ªH (

p>kF
~o!

n

L
2 (

kF
~ i !

,p,kF
~o!

12n

L J V0~k2p!,

~B6d!

d«k
F
ª

1

L(
p

Vk2p~0!. ~B6e!

The two terms displayed in Eqs.~B6d! and ~B6e! represent
the electrostatic and exchange contributions to the external
potential felt by the holes. In Fig. 5, we show their spatial
variation. Note thatd«k

F appears because of particle-hole
conjugation; it represents the repulsive exchange interaction
between holes and the vacuum which is weaker at the edge
of the system and attracts holes to the physical boundary of
the QH sample. Apart from this term and the constantEh ,
the above Hamiltonian could also describe two strips ofelec-

trons in the ñ51/m and ñ51 states, respectively. This term
is responsible for the qualitative distinction between the edge
structures forn5121/m and n51/m bulk fractional QH
states. TheqÞ0 two-body terms give the energy contribu-
tion due to exchange and correlation between electrons in
different strips.

Close to the edge of a QH system that has a filling factor
1/m with m53,5, . . . , oscillations occur in the occupation
numbers of the lowest-Landau-level basis states.37 In our
model of a QH edge at filling factorn5121/m, such oscil-
lations occur at the inner edge. The expression for the elec-
trostatic contribution to the external potential which is given
in Eq. ~B6d! does not account for the true occupation-

number distribution function at the inner edge. However, as
we comment below, corrections to Eq.~B6d! are small, and
we neglect them.

Now consider the difference in energy between a final
state and an initial state which differ by the transfer of one
hole from the inner strip to the outer one.~See Fig. 3.! We
find that

dEfin2dEini52z~12n!2
1

L (
k50

kF02kF
~o!

Vk~0!1dEres.

~B7!

The first term in Eq.~B7! is the correlation energy we have
to pay to remove the hole from the inner strip, the second is
the exchange energy we gain by putting the hole at the edge
of the outer strip, while the final term contains both the one-
body and two-body contributions from the residual interac-
tion dEres. The one-body piece isd«k

F
(o)2d«k

F
( i ) which can

be interpreted as the change in the self-consistent~external
1Hartree! potential felt by the hole which is being trans-
ferred. If we neglect correlations between holes from differ-
ent strips, the two-body residual term consists only ofhd

( i )

2hd
(o) , where we denote the exchange energy for a hole

interacting at a distanceh with the inner/outer strips by the
symbolshh

( i ) andhh
(o) , respectively. Hence we have

dEres5d«k
F
~o!2d«k

F
~ i !1hd

~ i !2hd
~o! . ~B8!

Using the expressions

hd
~ i !
ª2

12n

L (
p<kF

~ i !
Vk

F
~o!2p~0!, ~B9a!

FIG. 5. External potential for holes. In addition to the electro-
static contribution@dashed curve; cf. Eq.~B6d!# resulting from the
dipolar strip of charge, there is an additional contribution to the
external potential@dot-dashed curve; cf. Eq.~B6e!# which is en-
tirely due to particle-hole conjugation in a finite system. This sec-
ond contribution attracts holes to the physical edge of the sample
and is essential for the phase separation into an inner and outer hole
strip. The electrostatic potential was calculated for filling factorn
52/3 and a separationy( i )2y(o)5d2/3'1.7l of the inner and outer
edges.
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hd
~o!
ª2

1

L (
p>kF

~o!
Vk

F
~ i !2p~0!, ~B9b!

which can be expected to be good for not-too-small distances
yini

( i )2yini
(o)[@kF

(o)2kF
( i )# l 2, we find dEfin2dEini5DH2DF,

where

DH5d«k
F
~o!

H
2d«k

F
~ i !

H
, ~B10a!

DF5z~1!2z~12n!1
n

L (
k>kF

~o!
2kF

~ i !
Vk~0!. ~B10b!

As noted above, our calculation ofdEfin2dEini neglects
contributions due to the oscillations occurring in the
occupation-number distribution function37 for holes at the
inner edge. Taken into account properly, these oscillations
would affectdEres in essentially the same way as they affect
the energy per particle of the inner QH strip. In Ref. 38, the
energy per particle for a filling factor equal to 1/3 was cal-
culated for two different choices of the neutralizing back-
ground: ~a! a constant background-charge density that neu-
tralizes the electron charge in the bulk, and~b! a background
that neutralizes the electron charge locally. The difference
between the values of the energy per particle for the models
~a! and ~b! corresponds to the correction to Eqs.~B6d! and
~B7! when the true occupation-number distribution function
is used. This difference was found38 to be smaller than
0.0001e2/(e l ). The error we make in our calculation ofdEres

is therefore three orders of magnitude smaller than the re-
maining term in Eq.~B7!.

Expressions for the matrix elements which are derived for
the Landau gauge11,30 enable us to calculate the two contri-
butionsDH andDF, at least numerically. In Fig. 4, we show
the result for filling factorn52/3. The solid and dashed
curves are the results forDH and DF, respectively. In par-
ticular, we used

d«k
H52

e2

e lp

1

A2p
E

2`

`

dkk lnukuF~k,y/ l ,l/ l !

~B11!

with the definitionsyª@kF02k# l 2 ([ coordinate perpen-
dicular to the edge, measured from the physical edge of the
sample towards the bulk!, lªy1

( i )2y1
(o) ([ separation of

the inner and outer edges in the initial state!, and

F~k,y,l!ª~12n!expH 2
@k2y1l/n#2

2 J
2expH 2

@k2y1~12n!l/n#2

2 J
1nexpH 2

@k2y#2

2 J . ~B12!

To make progress analytically, we have derived a systematic
expansion of DH in the parameter@y1

( i )2y1
(o)#/ l . The

asymptotic result in the limit of large separation of the two
edges is

DH52
e2

e l

1

p
@n ln~n!1~12n!ln~12n!#

y1
~ i !2y1

~o!

l
,

~B13!

which yields the analytical result forvJ as it is given in Eq.
~21!.

APPENDIX C: TRANSVERSE DENSITY PROFILE
FOR EDGE EXCITATIONS

Although we use 1D models to describe edge excitations,
it is important to realize that the electrons forming the frac-
tional QH sample move in 2D and, therefore, have a wave
function that depends ontwo coordinates. The part of the
wave function depending on the transverse coordinate~y! is
Gaussian with a width of the order of the magnetic lengthl .
Hence, the transverse density profile~i.e., the variation of the
2D density perpendicular to the edge! is not sharp on scales
shorter than; l , even if the occupation-number distribution
function ~ONDF! for the lowest-Landau-level basis states
were sharp~as is the case, e.g., when the filling factor is
equal to 1!. In this section, we consider the 2D aspect of edge
excitations of fractional QH systems at the simple filling

factorsñ51/m, wherem51,3, . . . . In particular, the profile
of the 2D charge density perpendicular to the edge is calcu-
lated for many-body states with edge excitations present. The
results presented in this section were applied to the inner and
outerhole strips that arise in the model of a sharp edge of a
fractional QH sample at filling factorn5121/m, as dis-
cussed above in the bulk of this paper.

The sample geometry considered here is the surface of a
semi-infinite cylinder, see Sec. III, which is occupied by

electrons such that the filling factorñ is equal to the inverse
of an odd integer. This sample therefore supports a single
branch of edge excitations which are, without loss of gener-
ality, assumed to be right-going. The edge is located aty
50, and the largest wave-vector label of lowest-Landau-
level states that are occupied in the ground state iskF . To
avoid confusion, operators are indicated, in this section, by a
caret.

In a symmetric notation, and using our conventions for
the sample geometry, the second-quantized operator of the
2D density in the lowest Landau level is

n̂2D~x,y!5
1

L(
q

exp$ iqx%exp$2~ql !2/4%(
k

exp$2~y2@kF2k# l 2!2/ l 2%

p1/2l
ck1q/2

† ck2q/2 . ~C1!
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The operator of the 1D edge density is defined as the integral
of Eq. ~C1! over the transverse coordinate~y! from minus
infinity across the edge to a reference pointy5Y.0, located
in the bulk:

r̂1D~x!5E
2`

Y

dyn̂2D~x,y!. ~C2!

It is easy to see that the Fourier components of the 1D edge
density operatorr̂1D(x) have the form

r̂q
1D5exp$2~ql !2/4%(

k
I kck1q/2

† ck2q/2 , ~C3a!

where

I k5
1

p1/2l
E

l 2kF2Y

`

dy exp$2~y2 l 2k!2/ l 2%. ~C3b!

As we are interested in the long-wavelength limitq! l only,
the Gaussian prefactor in Eq.~C3a! will be dropped. In the
subspace of low-energy excitations, the Fourier components
of r̂1D(x) obey the familiar chiral-Luttinger-liquid commu-
tation relations8

@ r̂2q8
1D ,r̂q

1D#5 ñ
qL

2p
dq,q8 . ~C4!

Due to the incompressibility of the ground stateuC0& of a
fractional QH system at filling factorñ, the operatorsr̂2q

1D

satisfy

r̂2q
1D uC0&[0 for q.0. ~C5!

We pose the following problem: Given a stateuc& in the
edge-excitation subspace that has a 1D density fluctuation
d%(x) along the edge, what is the full 2D density profile for
this state? At first sight, this seems like a question impossible
to answer: How can we deduce the 2D density from its inte-
gral over the transverse coordinate? Enabling us to solve the
above problem is the fact that the low-lying excitations in the
system are created by the operatorsr̂q

1D for positiveq. The
edge-density fluctuationd%(x) determinesuc& uniquely to
be a coherent state39 of the form

uc&5expH 2p

ñL
(
pÞ0

d%2p

p
r̂p

1DJ uC0&. ~C6!

Here,d%p is a Fourier component of the 1D density fluctua-
tion:

d%p5E
0

L

dxeipxd%~x!. ~C7!

It is then straightforward to calculate the 2D density fluctua-
tion dn2D(x,y) associated with the stateuc&, which is de-
fined by

dn2D~x,y!5^cun̂2D~x,y!uc&2n0
2D~x,y!, ~C8!

where we denote the 2D density profile in the ground state
by n0

2D(x,y)ª^C0un̂2D(x,y)uC0&. The result is

dn2D~x,y!5n0
2D@x,y12p l 2d%~x!/ ñ #2n0

2D~x,y!,
~C9!

which implies that the 2D density profile for a state with an
edge waved%(x) present differs from the ground-state den-
sity profile by arigid transverse deformation. The amount of
the transverse displacement is 2p l 2d%(x)/ ñ. Application of
this result to the inner and outer edges of a QH sample at
filling factor n5121/m immediately yields Eq.~18!.

To determine the parameters in the generalized TL Hamil-
tonian describing edge excitations for a QH system at filling
factor n5121/m, we have to calculate the energydEC of
Eq. ~10b! up to second order in the 1D edge-density fluctua-
tions. For that purpose, we need the 2D density profile of Eq.
~C9! only up to first order ind%(x), which reads then

dn2D~x,y!5
2p l 2

ñ
@]yn0

2D~x,y!#d%~x!. ~C10!

In a situation where the ONDF is a step function with a step
of height ñ at k5kF , one finds the analytical result

2p l 2

ñ
]yn0

2D~x,y!5
exp~2y2/ l 2!

Ap l
. ~C11!

Equation ~C11! is exact for a QH strip at a filling factor
equal to 1. It also applies to the density profile of the neu-
tralizing background we have chosen@see Eq.~B2!#. We can
then deduce the form factors to be used in Eqs.~11!; they are

F ~ i !~y!5
2p l 2

12n
]yn0

~ i !~x,y2y~ i !!, ~C12a!

FIG. 6. Accounting for the full 2D density profile in our calcu-
lation of the Coulomb contribution,dEC , to the edge-mode energy
requires the introduction of appropriate form factors,F ( i )(y) and
F (o)(y), for the inner and outer hole strips.~See Sec. III A.! As
shown in Appendix C, these form factors are related to the deriva-
tive of the 2D ground-state density profile in the transverse direc-
tion. It is possible to determineF (o)(y) analytically @dotted curve,
see Eq.~C12b!# because there are no fluctuations in the occupation
numbers for holes in the outer strip which has a filling factor equal
to 1. The situation is more complicated for the inner hole strip
which has a fractional filling factor equal to 1/m with m
53,5, . . . . With the solid curve, we show the form factorF ( i )(y)
for m53 obtained from the ground-state density profile that has
been determined numerically in Ref. 38.
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F ~o!~y!5
exp~2y2/ l 2!

Ap l
, ~C12b!

F ~b!~y!5
exp~2y2/ l 2!

Ap l
. ~C12c!

We have denoted the 2D ground-statehole density for the
inner strip byn0

( i ) . At present, it is not possible to give a
closed-form analytical result forF ( i )(y). So far, the 2D den-
sity profile and ONDF for fractional QH systems withñ
51/3, 1/5, and 1/7 have only been obtained numerically
for small numbers of particles.37,38 It is established that
the ONDF in fractional QH systems at the simple 1/m
filling factors is not a step function.8 With a broadened
ONDF at the inner edge, we also expectF ( i )(y) to be
broader thanF (o)(y). However, the form factorF ( i )(y) dif-

fers from F (o)(y)[F (b)(y) in a more significant way be-
cause oscillations appear37,38 in the ONDF and the 2D den-
sity profile close to the edge of añ51/m QH sample when
m.1. In the long-wavelength limit, all these effects are
taken into account in the correction factorsYl andYC. @See
Eqs. ~17!.# To compute actual numbers for the experimen-
tally most relevant case ofn52/3, we have taken the data
reported in Fig. 3 of Ref. 38 for the 2D ground-state density
profile of a fractional QH system atñ51/3 and derived the
corresponding form factorF ( i )(y). The result is given in Fig.
6, where we also showF (o)(y) as it is determined from Eq.
~C12b!.

Using the analytical expressions forF (o)(y)5F (b)(y) and
the numerical result forF ( i )(y) as shown in Fig. 6, we de-
termine the wave-vector-independent quantitiesD (bi), D (bo),
andD (bb) for the case ofd5d2/3'1.7l . This yields Eqs.~17!
with the quoted values of the correction factors.
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