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PHYSICAL REVIEW B VOLUME 58, NUMBER 20 15 NOVEMBER 1998-II

Observability of counterpropagating modes at fractional quantum Hall edges

U. Zulicke and A. H. MacDonald
Department of Physics, Indiana University, Bloomington, Indiana 47405

M. D. Johnson
Department of Physics, University of Central Florida, Orlando, Florida 32816
(Received 16 January 1998; revised manuscript received 29 April) 1998

When the bulk filling factor isv=1—1/m with m odd, at least one counterpropagating chiral collective
mode occurs simultaneously with magnetoplasmons at the edge of fractional quantum Hall samples. Initial
experimental searches for an additional mode were unsuccessful. In this paper, we address conditions under
which its observation should be expected in experiments where the electronic system is excited and probed by
capacitive coupling. We derive realistic expressions for the velocity of the slow counterpropagating mode,
starting from a microscopic calculation which is simplified by a Landau-Silin-like separation between long-
range Hartree and residual interactions. The microscopic calculation determines the stiffness of the edge to
long-wavelength neutral excitations, which fixes the slow-mode velocity, and the effective width of the edge
region, which influences the magnetoplasmon disper$®oil63-182608)02243-1

I. INTRODUCTION an especially simple microscopic description. Since the mag-
netic field breaks time-reversal symmetry, EMP modes
A two-dimensional2D) electron system in a strong trans- propagate along the edge in one direction only; they are chi-
verse magnetic field can exhibit the quantum HgIH) ral. In general, however, the edge can support more than one
effect!? This effect occurs when the electron fluid becomesbranch of chiral edge excitations, and some of these can
incompressiblé at magnetic-field-dependent densities. Thepropagate in the opposite direction. For example, counter-
physical origin of the incompressibility, i.e., of an energy propagating modes can occur even at integer filling factors
gap for the excitation of unbound particle-hole pairs, is quitewhen an edge reconstruction takes pleceere we study in
different for the integer and fractional QH effects. In the detail the case of bulk filling factors=1—1/m for which
integer case, the incompressibility arises from Landau quarbotht?® microscopic theory and phenomenological consider-
tization of the kinetic energy of a charged 2D particle in aations suggest that, even when the edge is sharp, at least one
transverse magnetic field, while in the fractional case it is a&counterpropagating mode exists in addition to the EMP
consequence of electron-electron interactions. In both casesiode. For short-range electron-electron interactions, the two
however, the only low-lying excitations are localized at thecollective modes consist of an outer mode similar to the
boundary of the QH sample. In a magnetic field, collective=1 chiral edge mode, and an inner mode which propagates
modes, known as edge magnetoplasfidB&P), occur at  in the opposite direction and has hole character, but is oth-
the edge of a 2D electron system even when the bulk igrwise similar to the chiral mode which occurs at the edge of
compressible. Outside of the QH regime, however, thesa v=1/m QH system.(See Fig. 1. Long-range interactions
modes have a finite lifetiffefor decay into incoherent change the character of the collective modes. In the limit of
particle-hole excitations and are most aptly described using strong coupling by long-range Coulomb interactions, the
hydrodynamic picture. In the QH regime, provided that thenormal modes that emerge &féa high-velocity mode as-
edge of the 2D electron system is sufficiently siiathe  sociated with fluctuations in the total electron charge inte-
microscopic physics simplifies and there is no particle-holegrated perpendicularly to the edge, and a lower-velocity
continuum into which the modes can decay. Generalizationmode associated with fluctuations in the distribution of a
of models familiar from the study of one-dimensiortdD)  fixed charge at a particular position along the edge. The two
electron systeniscan then be used to provide a fully micro- modes propagate in opposite directions. The higher-velocity
scopic description of integéand fractiondl® QH edges. In  mode is the microscopic realization of the EMP mode for a
these models, EMP appear as free Bose particles in theharpr=1—1/m edge.
bosonized description of a chiral 1D electron gas. The occurrence of a counterpropagating mode with lower
In this work, we consider the edge of a 2D electron sys~elocity is, perhaps, counterintuitive. No such modes occur,
tem in the regime where the fractional QH effect occurs, i.e.for example, in hydrodynamic theories of edge normal-mode
for filling factors »<<1 and » equal to one of the filling structure. Anticipation of a single lower-velocity long-lived
factors at which the bulk of the 2D system is incompressiblecounterpropagating collective mode in the case of sharp
The fractional quantum Hall effect is most easily understoocedges is grounded on fundamental notions of the micro-
for v=1/m, wherem=1,3,5,... . For these values ofand  scopic theory of the fractional QH effect, and on fundamen-
for a confining potential that is sharp enough to prevent edgéal notions of the phenomenology used to describe its edges.
reconstructiort®! a single branch of bosonized excitations Experimental verification for their existence would provide a
occurst?® These are EMP modes, which, in this case, havepowerful confirmation of the predictive power of these theo-
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o%l(%rﬁ?on mode: the separatiod of the inner and outer edges, and a
outer edge| ~number velocity v; used to parametrize the stiffness of the edge to

inner edge neutral excitations. Evaluations of these parameters for a mi-

-1 croscopic model of a shamp=1—1/m edge are presented in
 holes in 1/m-FQH state | . Sec. IV. Numerical results are given for the experimentally
Filitd] el ol of @lesian most relevant case=2/3. We conclude in Sec. V with a

discussion of the implications of our results for possible ex-
dipolar strip of charge | d perimental studies. Some details of our calculations have
y = 0 k been relegated to Appendixes.
M, 1T
-V Il. EDGE WAVE PACKETS AT TWO-BRANCH EDGES

In previous work’ we have presented a detailed theory of
EMP wave-packet dynamics for single-branch fractional QH
edges. Schemes for the excitation and detection of EMP
wave packets were discussed, along with an analysis of the
les of noise and coupling to phonons of the host semicon-

FIG. 1. Schematic electron-occupation-number profile at th
edge of a fractional QH sample for filling facter=1—1/m. This
picture(see Ref. 12is based on the use of particle-hole conjugation
(Refs. 19 and 20to understand the bulk=1—1/m fractional QH
effect. The states are most conveniently described in terms of hol€ A . X o
in a filled Landau level. Two fractional QH strips are formed by the uctor. In this _sectlon we briefly pr_esent a generalization of
holes an inner strip with filling factors®=1—y=1/m and an € MOst pertinent portions of this paper to the case of

outer strip with filling factor»(®=1. The two strips are separated Present interest. . .
by a distanced. The abscissa is the wave vectoparallel to the We start from the assumption that the total electronic

edge. In the Landau gauge, a state having wave védtolocalized ~ number density integrated perpendicularly to the edge can be
at a positiory perpendicular to the edge which is proportionakto ~ Separated into contributions from the inner and outer edges:
Here, we measurg from the physical boundary of the sample in- ¢()(x) and ¢(®(x). Herex is the 1D coordinate along the
wards. If the 2D electron system is placed in a coplanar neutralizingperimeter of the QH sample, which we take to have lehgth
background charge with a sharp edge, the total charge density wilVe write®18
be negative between inner and outer hole strips and positive inside
the outer hole strip. The schematic illustration of the resulting di-
polar strip of charge is unrealistic in its depiction of the variation of _ qv(” o ) )
charge density across the edge. The density profiles at the edges of  p(x)= >, \/ —(ag)e'qx+[ag)]fe"q"), (18
both hole strips vary on a magnetic-length scale. Accounting for q>0 27l
this in our calculations requires only the introduction of appropriate
form factors.
(0) X)_z qV_(O) (0)g—iax_y [ 5(0)7taigx (1b)

ries. However, time-domain studiésf the propagation of e _q>0 27-rL(aq € [ag"]'e™).
edge excitations at filling factor=2/3 have turned up no
evidence for this mode. . A

The main focus of the work presented here is to addresblere,ag) (aﬁf’)) and[ag')]“” ([ag")]f) are Bose annihilation
properties of the sharp=1—1/m edge, with the objective and creation operators for chiral edge modes with 1D wave
of guiding future attempts to verify its normal-mode struc- vector g at the inner(outep edge. The values of the filling
ture. In Sec. Il we discuss the excitation, propagation, andactors arev):=1— v=1/m and »(®:=1. The commutation
detection of edge collective modes ata1—1/m edge. The relations implicit in the identification of creation and annihi-
discussion in this section is phenomenological, and startktion operators follow, in the case of short-range interac-
from the assumption that the edge charge is composed @ins, directly from microscopic consideratidhs’>**which
contributions from two coupled chiral Luttinger liquids with we elaborate on in further detail in Sec. IIl; see also Appen-
opposite chirality. Such a model can be regarded as a genetlix B. The different sign of the wave vector associated with
alization of the Tomonaga-LuttingeffL) model® that is  creation operators at the inner and outer edges expresses the
used to describe conventional 1D systems such as quantuetectron character of the outer chiral edge excitations and the
wires or 1D organic conductors. The parameters of the gerhole character of the inner chiral edge excitatins.
eralized TL model Hamiltonian, which fix the velocities of = For general interparticle interactions, we do not expect
the normal modes and the way in which they are excited anthat the low-energy effective TL Hamiltonian will be diago-
detected, are derived from a microscopic treatment of th&al in the boson fields associated with inner and outer edges.
underlying 2D electron system. This calculation requires arhe normal modes will be linear combinations of inner and
careful separation of long-range Coulomb and residual coneuter edge modes with coefficients which depend on the ef-
tributions to the TL model parameters, explained in Sec. lll.fective interactions between inner and outer edges and vary
The philosophy of this calculation is similar to that of from system to system. For the case of strong coupling due
Landau-Silin theordf in which long-range Coulomb and re- to long-range Coulomb interactions, one of the normal
sidual interactions between quasiparticles in metallic Fermmodes is the EMP, and the other, phononlike, mode will
liquids are carefully separated. We find that two characterishave linear dispersion at long wavelengtid The two sets
tics of the edge structure are most important in determiningf creation and annihilation operators are related by a Bogo-
the dispersions of the EMP mode and the counterpropagatingibov transformation:
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(ph
q - (P (et (P 4 =(php - (A7t (ph)
[agph)]T>’ @ Ho_qgo Eq [ag 1'aqg +Eq [ag T'ag", (3

o

ag’) _ cosly, —sinhb’q)
[al’]") | —sinh6, coshd,

with E{ andE{PP™ denoting the dispersion relations for the
] o EMP and phonon modes, respectively. In Sec. lll, we derive
where the hyperbolic anglé, is, in general, wave-vector explicit expressions for these dispersion relations. Now sup-
dependent. When the Coulomb interaction is unscreenegose that an external time-dependent poten&r{(t)
however, the coefficients become universal at the longestouples electrostatically to the edge. This can be achieved,

length scales: COS?h—n/y(O)/V for g—0. e.g., by applying a voltage pulse to a metallic gate close to
In the absence of an external perturbation, the diagonakhe edgeé*'” In general, the coupling of the inner and outer
ized TL model HamiltoniarH, of the edge is edges to the external perturbation will differ:
|
L . .
Vex‘(t)=U(t)J dx[VEO(x) 00 (%) + Vi (x) e V(x)] (4a)
0
qL i - o
:u(t)qzo 2\ ,E{ /V(o)(vtix(;,oago)+Vgxt,o[ago)]1‘)+ /V(l)(vgxt,lag)_,_Vvix(th[ag)]T)}_ (4b)

In this expression, the shape of the pulse is given by the@ulsel’ Wave packets with narrow wave-vector distributions
function u(t), and geometrical details of the coupling be- can be generated by repeating a lengil: pulse N>1
tween the gate and the 1D edge densities at the inner artnes.
outer edges are modeled by the functiod&(x) and One way to observe the time evolution of the charge dis-
VeXto(x), respectively. The detailed form of these functionsturbance created by the external perturbation is to measure
is determined by electrostatics. For practical purposes, it i$he chargeQ(t) that is induced by evolving wave packets on
usually adequate to assumdozal-capacitor modewhere  metallic gates situated close to the edge. In general, the gate
the metallic gate and the part of the edge located in its imwill respond differently to charge located at the inner and
mediate vicinity form the two “plates” of a capacitdf.ln  outer edges:
such a model, a capacitor which covers the outer edge but L
not the inner edge would ha\xeex“(_x)=0. We will see that Q(t):f dx[Veeto(x— xo){ 0(©)(x,1))
excitation of the counterpropagating phonon mode requires 0
differentiated coupling to the inner and outer edges; the deti i
local-capacitor model suggests that this could be achieved by VI (= x0) (@ V(. D)], ®)
arranging for an excitation gate which covers only the outemwherex; is the position(along the edgeof the observing
part of the edge region. Alternately, a side-gate geometry cagate, and angular bracket$ denote a thermal average. The
also lead to stronger coupling to the outer portion of the edgéunctionsV9U(x) [V°(x)] model the coupling of the de-
region. tecting gate and the 2D electron system, which, we assume,
Given the quadratic edge Hamiltonian, it is possible tocan be qualitatively understood using the local-capacitor
solve the time-dependent Schinger equation explicitly for model. An explicit calculation following the formalism of
H=Hy+V®{t) with general pulse shapgt) as detailed in Ref. 17 yields the result that there are two contributions to
Ref. 17. Wave packets of edge modes can be engineered liye induced charge(t) = Q®(t) +QP"(t), corresponding
appropriately adjusting the characteristics of the voltageo the EMP and phonon edge wave packets:

Q(pl,ph)(t) =2 R% Eo Qgphph)(t)exn:i ( FgXg— tEgprh)/ﬁ)]] . (6)
q>

In the smallg limit, for unscreened Coulomb interactions, we find that the Fourier components are given by

L . i
QP (t)= —zqw[vgxt"’—(l— VIVEHUIIVERe = (1= n) V] — f ~_dru(n)exdirEJ/A], (78)

L . i
QP"(t)= —qu (1= w)[Vg* o= VeH Vg - Vg f dru(r)exdirEP"/4]. (7b)
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From Egs.(7) we can deduce how the excitation and detecthe zero for they coordinate such that a state with lakdlas
tion of the two counterpropagating wave packets depend oits y-dependent orbital centered wt= (keo—k)I12. We use
the device parameters. To create and observeptitmon the simplest possible microscopic model which will produce
wave packet, both exciting and observing gates must coupla sharp edge for the 2D electronic system by taking the elec-
differently to the inner and outer edges. This condition prob-+rons to be confined by a coplanar neutralizing positive back-
ably requires that the metallic gates be positioned with arground. To be specific, we take a background which would
accuracy better thad, the distance between the inner andexactly cancel the electron charge density if each electronic
outer edges. The relative amplitudes of EMP and phonomrbital were occupied with probability 21/m out to the
wave packets can be inferred from Ed3) as well: for edge. As we explain later, the electronic system is drawn in
Vet (x)=V9li(x)=0, e.g., the amplitude of the phonon at the edge, which permits us to lkt, coincide with the
wave packet is smaller by a factor of {Iv) than the ampli- edge of the positive background.
tude of the EMP wave packet. This is probably the largest When edge effects are neglected, the many-particle
relative amplitude which can be achieved. The group velociHamiltonian truncated to the lowest Landau level is exactly
ties of the phonon and EMP wave packets will generally beparticle-hole symmetric. It follows that the ground state with
quite different: v=1-1/m is precisely the particle-hole conjugate of the
oo ground state at=1/m.'%2%3particle-hole symmetry is bro-
oiph_ L dE/"P o ken at the edge of the system. It has been conjectbitkelt
v “h dq ®  the ground-state electronic structure at the edge is formed by
the particle-hole conjugate of &= 1/m fractional Hall state
whereg®'P" is the median wave number of the Superposi_for holes which i_s err_lbedded into a filled-Landau-level state
tion of the modes forming the EMP and phonon wave packfor €lectrons which is truncated akeo. For sharp edges,
ets. (See Sec. Il for explicit expressions for the dispersionnumerical studies support this vieit*® The calculations
relationsE(P) andEPM . Typical values for the velocities are presented here provide further insight into the consistency of

given in Sec. V) Since both wave packets are created by theth|s scenario. In this paper, we find it convenient to describe

same external voltage-pulse characteristics, we Rhokat edge states of a=1-1/m QH sample in the Iangque of
(o) _ (ph) L . holes. The ground state then consists of holes which have
a0 = Ea(ph)=27rﬁ/Texc, which in turn allows us to predict

h) = < ' phase-separated into an inner stgf)<y<s, which is in
that the width(in real spacgof the phonon wave packet is ihe incompressible state with filling factor)=1—

1
g=q(P.ph

smaller by a factor of the order of*"/v(") than the width  —1/m and an outer strip with holes present foe9®<y
of the EMP wave packet. <y with hole filling factor »(®=1. Fory®@<y<y® no
holes are present, i.e., the electron orbitals are fifletls-
Ill. SEPARATION OF CONTRIBUTIONS TO THE 1D suming overall charge neutrality(® andy(" are not inde-
HAMILTONIAN pendent, and the state is completely characterized by the

In this section, we develop a framework which reducessei:)aratIord between the inner and outer hole strips:

the task of determining generalized-TL-model parameters to

a calculation of two microscopic quantities. The latter deter- dzy“)—y<°>=1 z [y©@—y®]= I z yo. (9
mine the EMP and edge-phonon dispersion relations and the i v
hyperbolic mixing anglef, of Eq. (2). For d=0, the outer strip is absent, and the system is strictly

We consider a semi-infinite cylindrical QH sample which neytra) jocally. Ford>0, the sample is stiljlobally neutral
extends from the edge newpr=0 to in they direction and  because of the presence of the uniform neutralizing back-
satisfies periodic boundary conditions in thelirection with ~ ground, but a deviation from local neutrality in the form of a
0=<x=<L. This geometry is convenient for calculations, anddipolar strip of charge exists; see Figs. 1 an@)2This
the results we obtain are readily applied to experimentallyground-state configuration is still 1D locally neutral, by
realistic geometries. It is convenient to use the Landau gaugghich we mean that, at any fixed positigralong the edge,
for the single-particle basis states that describe the motion dhe charge density integrated perpendicularly to the edge
a 2D charged particle in a uniform transverse magnetic fiel/ields zero. Note that, in this hole language, charge fluctua-
B. The Landau-gauge basis states factor into a plane wawéons are possible only 3" andy(®). The outer edge of the
with 1D wave vectork, dependent on the coordinate par- outer hole strip ay=y®=0 originates from the truncation
allel to the edge, and a harmonic-oscillator orbital of witlith of the Hilbert space in which we perform the particle-hole
centered at-kl? and dependent on thecoordinate perpen- conjugation and doesot support physical excitations.
dicular to the edge. Here= \#c/|eB| denotes the magnetic Phenomenologicﬁland microscopi%2 considerations for
length. The proportionality between the 1D wave vector parthe noninteracting case have established that the excitations
allel to the edge and spatial displacement perpendicular tat a chiral QH edge can be described as the excitations of a
the edge, in conjunction with the geometry of our QH chiral 1D electron system. This is obvious for a filling factor
sample, implies that, for the many-particle ground state an@qual to 1, because a filled Landau level is equivalent to a 1D
its low-lying excitations, single-particle states wikibeyond ~ Fermi sea® But even more generally, for QH systems with
a maximum valudgo will be occupied with negligible prob- simple filling factors of the form bh with m odd, the low-
ability. It will be convenient for us to exploit this property by energy excited states are in one-to-one correspondence to the
working in a truncated many-particle Fock space which in-low-lying states of a chiral 1D Fermi ga5?? It can be ex-
cludes only single-particle states witt<kgy. We choose pected that, in the chiral system, the character of the low-
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(a) added However, for some physical properties, e.g., the spin mag-
hole I —(-v) netic susceptibility, the Coulomb interaction cancels out,
i dl(m-1) leaving a dependence only on the weaker residual interac-

31 I ot S tions which reflect correlations between underlying elec-

y y‘i% y© tronic degrees of freedom. Evaluation of the Fermi-liquid

parameters that determine the spin susceptibility requires that
the direct Coulomb interaction be carefully separated from
exchange and correlation contributions. Our main aim here is
T to estimate the phonon-mode velocity, which would vanish if
only Coulomb interactions between 1D charge densities were
charge density included in the generalized TL model Hamiltonian. In order
to accurately evaluate the important residual contributions to
®) added the effective interactions in the model, we introduce an arti-
hole 1 —-v) ficial model in which long-range Coulomb interactions are
eliminated by adjusting the background charge to maintain
Lo 1D local charge neutrality. The energlk, of a state with a
given 1D charge density for the physical case of a fixed
background charge differs from the energy of the fictitious

1D locally neutral systemgE, because of the interactions
between electrons and the change in background, and be-
cause of the self-interaction energy of the artificial change in

background. For details, see Appendix A. Lettifnf?(r) be
the change relative to the ground state of the 2D electron

density andsnjo(r) be the change in the background density
=1-1/m, the ground-state charge-density profile at a sharp edgB€CESSary in the fictitious 1D locally neutral system, we find

will have the dipolar strip that is illustrated schematically in Fig. 1. that
However, at any point along the edge, the 1D charge density in the
ground state, obtained by integrating the 2D charge density along -
the coordinate perpendicular to the edge, is zero. At long wave- OE=dpupgt OB+ SEc, (109
lengths, parameters of the generalized Tomonaga-Luttinger model

for the edge are dominated by the long-range interactions betwesjith the definition

1D charge-density fluctuations. On the other hand, the chiral-

phonon-mode velocity is determined by smaller residual interac-

tions. In order to determine these accurately, we introduce a ficti- e? r d2rd2r’

6EC:=?f

y y“" ‘

removed |
background

charge density

FIG. 2. For a quantum Hall system with bulk filling facter

tious model system in which the edge of the background charge is
adjusted to maintain zero 1D charge density at each point along the
edge. For example, when a hole is added at the inner [gddethe (10b
background charge is reduced by moving its outer edge as illus-

trated in(b). Similarly, when the outer edge is moved outward, the
background edge is also moved outwaiSlee texd. Here we mea-
sure densities in units of 1/¢8?).

N N 1 .
Sngg(r) 5n2D(r’)—§ Snge(r') |,

r=r’]

and a termsupg contributing to the chemical potential which
is irrelevant for our considerations to follow and will be
dropped from now on(See Appendix A.Here,e character-

lying excited states remains unchanged in the presence &es the dl|e|e.ctr|c~enV|2r[())neme.nt of the .ZD_ electron SYS%”"
(even long-rangeinteractions’? As seen above, application 1he contributionsE[ 5n“"(r)] is the excitation energy in the
of particle-hole conjugation to describe the QH effect for 1D locally neutral artificial system, and we will subsequently
systems at filing factorr=1—1/m leads to an edge- refer to it as the neutral term; it contains only short-range
electronic structure with two chiral edges; the inner edge aftéraction contributions. The long-range Coulomb interac-

y" (i.e., the outer edge of the hole system that is in thdion IS contained inSEc, the “Coulomb term.” In the fol-
»M=1—1=1/m QH staté and the outer edge 3 (i.e., lowing subsections, we derive expressions for the two corre-

the inner edge of the hole system that is in thd= 1 filled- sponding contributions to the Tomonaga-Luttinger model

Landau-level staje The validity of our description of the Hamiltonian which depend on two micros_copic paramete_rs
edge of such a QH sample in terms of a generalized T|Characterizing the edge. Section IV describes the evaluation
model rests on the assumption that, even in the presence 8? these parameters.

long-range interactions, the low-energy scattering processes

conserve the number of particles at the inner and outer edges A. Edge-mode energies: Coulomb term

separately.

Our calculation of the parameters of the generalized-TL ] o
effective Hamiltonian is similar in spirit to the Landau-Silin tion, we have to find the 2D charge distributions(r)
theory® for charged Fermi liquids. In a metal, interactions and ﬁnﬁgD(r) that correspond to the 1D charge fluctuations
between quasiparticles, especially at small scattering angleg(’(x) and ¢(®)(x) associated with edge waves at inner and
can be totally dominated by the direct Coulomb interaction.outer edges. Most generally, we can write

To evaluate the Coulomb terdE. for an edge excita-
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on?(r) =V () F D (y—y®)+e @) F O (y—y'), el 1-vd?
(119 Ng=— 7 —In 16a3YA(d)7|—q , (173
ngg(N=[e"(x)+e@)IFP(y—y®). (11 & 1
ve=—— —In[Yc(d)(1—v)]. (17b

The structure of the transverse density profile at the inner eh

and outer edges as well as at the physical boundary of the

sample enters through the form fact&r®(y), F©(y), and The fact thaﬂ\_q—mo fo_r g— 0 results from the long range of
F®)(y), respectively. Using the Fourier representation, andn® Coulomb interaction. Thetdependent factors, (d) and

defining the coupling functions Y c(d) account for the details of the transverse density pro-
file. Both approach unity fod=I|. The microscopic param-

2 eterd must be determined to fix the TL model parameters. Its

e
ng)::—zf dydy Ko(aly—y’|) value for filling factorv=2/3 is calculated in Sec. IV, where
€ . . . . . .
we find d,;z~1.71. This value is consistent with numerical
XEO(y—yM)ES) (y’ —y(s)), (12) studie$® performed for systems with up to 50 electrons. We

determined the correction factorsY',(d,)=~Y c(dys)
where the indices,se{i,0,b} andK, denotes a modified ~0.86. See Appendix C for that calculation and a detailed
Bessel function of zeroth order, we express the Coulombhliscussion of the transverse density profile for edge excita-
term in a form which will be convenient for identifying its tions. Our resul{Eq. (178] for the EMP dispersion relation
contribution to the TL modé? Hamiltonian: is similar to the one obtained in hydrodynamic thedtiés
. we interpretd?/| as the effective width of the edge region.
2 . .
- (1) (0) (i) (0)
Be= qu Maleq *eq lle=e* el B. Edge-mode energies: Neutral term
2wh o We now evaluate the neutral terdt in Eq. (109. This is
+ quo UC[QEO)QEOEF Qg)e(i)q : 13 the energy of an edge excitation in a fictitious system where
the neutralizing background is adjusted so that the charge
The parameters, andv ¢ have the units of velocity and are density integrated perpendicularly to the edge vanishes at

given by any fixed point along the edge. We call this property “1D-
local neutrality.” With excitations present, the inner and
2mhhg=F{)+FPO—FPY, (148  outer edges move to new positiog§),y(?, with a new
separatiorD =y —y(©)_ In the fictitious system where 1D
2mhvc=FP?—FP). (14b  local neutrality is maintained, the background charge ends

not aty®® =0 but instead at some new positigf?. When
the density of holes varies with all of " y(® y® D will
@Iso depend oxx. Requiring 1D local charge neutrality at
ch positiorx along the edge yields

(In most cases, the wave-vector dependence ©ofvill be
unimportant. In Eq. (13), we have separategE into a term
dependent only on the total 1D charge fluctuation at the edg
and a term which occurs because of the spatial separation i
inner and outer edges. The first term in EfE) corresponds ~ ~
to the familiaf EMP mode, which becomes one of the edge D(x)=(m=1)[y(x) -y (x)],

normal modes if long-range Coulomb interaction is . .

preserit?? (see also Sec. Il C belowIn that case, the sec- exactly like Eqg.(9). The neutral-edge fystem is completely
ond term in Eq(13) which involves the velocity - becomes ~ characterized bp(x), and the energyE can be expressed
important only at large wave vectors. Note thatifc were ~ @s a functional oD(x), or, more conveniently, as a func-
the only contribution to the edge excitation energy, the countional of [D(x) —d] whered is the ground-state separation
terpropagating phonon mode would have zero Ve|0city; Se@f the inner and outer edges. In order to quantize this energy

Sec. 11l C below. In the smaliy limit, Eq. (12) simplifies to ~ functional, we must expresd(x) in terms of the charge-
density contributions from inner and outer edges. The rela-

e tion between the deviation dD(x) from its ground-state
Fy®'=——2[In(4a’q)+A"], (19  valued and the 1D charge fluctuations localized at the inner
€ . . ..
and outer edges can be derived straightforwardly; it is

where a=e~/8~0.47, with C=0.577... being Euler's

1 .
constant, and D(x)—d=— 22 Q<°)(x)+EQ<')(X) . (19

A= f dydy In(ly—y’ +y "=y HFO(y)FE(y"). Equation(18) is an exact statement and follows from the fact
(16)  thatedge waves at the inn@uten edge correspond to rigid
deformations of the 2D ground-state density profile for the
[Some analytical details of the functidd') are knowrfor  inner (outehy QH strip. See Appendix C for details. When
the special case 6t (y) =FO(y)=expy/1?)/(71).1In  oD(x)=—0©(x)/m, both edges suffer identical displace-
general, Eqs(14) specialize in the smalk limit to ments and the distance between them is not altered.
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As the configuration withd (x)=d is the ground state, the dini

zeroth- and first-order terms in the functional expansion of < dw

SE with respect td D(x) —d] vanish. Unlike the Coulomb

term, this contribution to the energy will be local for long-

wavelength excitations, allowing us to parametrize the coef- y

ficient of the quadratic term in terms of a single parameter,
vy, with units of velocity:

5E—UJ1_V ﬁ fd
2w 22 X

1 -(1=v)

I
(i) (i) (0) (0)
yﬁn yim yfm yini

D(x)—d]?

(19 1Y

Expressing the distance between inner and outer edges in charge density

terms of inner and outer edge charge densities using1By.

FIG. 3. The process we consider to calculate the paramdters

and Fourier transforming allow us to write the short-range;ng, ;. we consider configurations in which the holes have phase-

term in a convenient TL forn}®

—v 1 L
(0) 5 (0) (1) 4 (i)
00t g5y 2a'e"

~ 2mh 1
O0E= U
L gq>0

1 . ‘

Z1p0) () (i) (0)
+ V[qu ey teq’e ] (20
We show in Sec. IV how to determine the velocity. An
analytical resulvalid for d>1) is

2

UJ=—ee—h%[vln(v)-i-(l—v)ln(l—v)]. (21

Our calculation(outlined in Sec. IV and detailed in Appen-

dix B) shows, however, that the ground-state separatign
of the inner and outer edges for the casevef2/3 is not

particularly large, so corrections to the asymptotic formula

separated into two incompressible strips as in the ground state at
filling factor »=1—1/m, but allow the separatiog!)—y{% of the

two strips to differ fromd (= the strip separation in the ground
statg. We imagine then that a hole is transferred from the edge of
the inner strip to the edge of the outer strip, preserving the 1D local
neutrality of the reference state. No adjustment of the background is
necessary, and the overall shape of the 1D density profile is similar
to its shape in the ground state. We are able to extract the values of

d andv, from the energy change produced by the hole transfer.

The energy of the phononlike mode, however, is naturally
given by the velocityw ;, because that quantity measures the
energy of excitations that preserve 1D local neutrality in the
system.

IV. EVALUATION OF EDGE WIDTH AND
PHONON-MODE VELOCITY

[Eqg. (22)] have to be taken into account. As an improved

result forv=2/3, we findv ;~0.24e?/(eh).

C. Dispersion of EMP normal modes

We have shown that the=1-—1/m sharp-edge Hamil-
tonian can be expressed in terms of two characteristic param-
eters: the ground-state separattbbetween inner and outer
edges, and the velocity;. In this section, we determine

The low-energy, small-wave-vector effective 1D Hamil- poth quantities simultaneously by calculating the energy

tonian for the edge at filling factar=1— 1/m can be written
in the form of a TL Hamiltoniart? it is given by
SEc+ SE—Hq, (22)

with the termsdE. and SE taken from Eqgs(13) and (20),

respectively. Equatiori22) signifies that we obtain the TL
Hamiltonian from our energy calculations by considering th
1D density fluctuations as operators which have the appr

priate chiral-Luttinger-liquid commutation relatiofis A
straightforward Bogoliubov transformatiofiEq. (2)] to the
normal modes yields the diagonal Hamiltonian of E). In
the small-wave-vector limiwhere\ ;>v;,vc), we find for
the dispersions of the EMP and phonon normal modes

(239

(23b

Eépl)=ﬁqv)\q ,

Egph)=ﬁQUJ .

[S)

change due to a hole transfer from the inner to outer incom-
pressible strips at a neutral edge.

Consider a configuration that differs from the ground state
only by the transfers of an arbitrary number of holes between
inner and outer strips. Such a state is 1D locally neutral, and
its charge profile perpendicular to the edge looks similar to
that of the ground state. However, we allow the separation of
dhe inner and outer edges=¢/) —y{%) to differ from the
valued for the ground statgSee Fig. 3. The energy of such
an excited state is given b§E,; (=4E;,; because no ad-
justment of the background is necessary to ensure 1D local
neutrality. If y{)—y(®) is not too different fromd, we can
write

= _vyl-v AL [[yh-vid1-d]?
OEin=0Eini=% — | | ,

(24)

[The expression fok in its most general form is given in which is a specialization of Eq19) to the case of an exci-

Eq. (14a. With our approximations used, we find E473.]

tation with a transverse density profile that is uniform along

We see that the energy of the EMP normal mode is dug¢he edge.

primarily to the Coulomb interaction; the separatobof the

Now we transfer one extra hole from the inner edge to the

inner and outer edges in the ground state enters prominenttyuter one(see Fig. 3. This changes the separation of the two
because it determines the effective width of the edge regioredges by
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2712 0.6 ™ T
(25) electrostatic energy needed for hole transfer

R exchange—correlation energy gained

=== L/3)- )

14
AD(X): lTV

For the corresponding energy change, we find 0.4

ho s [y —y©]—d
A(5Eini)% % [y|n| )Illm ] ,

/el

(26)

3]

(e

where we neglected a term that is small if the relation

[y —yi91-d V]

I 2m 1-vL _0a L . \ A
0 5] (1) d 2 3
holds. As the perimetdr of the edge in typical QH samples Y — Y  (magnetic length 1)

is usually many magnetic lengths, such an assumption is
valid except for an extremely narrow interval around the FIG. 4. Energy balance for the transfer of a hole from the inner
point yi(,L?—yi(r?i)=d. edge to the outer ongsee Fig. 3. The curves are calculated for a
To determine the parametedsandv;, we performed a filling factor »=2/3. The electrostatic energy required to transfer
microscopic calculation of the energy on the left-hand side othe hole(solid curve is the work performed against the external
Eq. (26). This turns out indeed to yield an expression of thePotential stemming from the dipolar strip of charge; see Fig. 1.
form of the right-hand side, with suitable choices of the pa-Details of its evaluation are given in Appendix B. This portion of
rametersd andv ;. The equilibrium separation between inner the energy is linear in the separatigff) —y{g of the inner and
and outer edges is reached when the energy change assaiter edges for sgparatlons Iarggr than t.he magnetlc. length. The
ated with hole transfer vanishes. A summary of the calcula€¥change-correlation energy gain is given approximately by
tion details is relegated to Appendix B. Here we explain thejg(l)|_|§(1/3)|‘ Corrections to the s'.mpk.a expression for the
main ingredients and report numerical results for filling fac-.eXChange'CO”elat'on energy galn-detaned in Appendix B become
tor »=2/3, which are summarized in Fig. 4. important at smaller interedge distance. The full result for the

exchange-correlation energy gain is given by the dashed curve. The

th T_he energy retqu[{rhed to ![:)erform tr?e transfer |0f a flo_léz ];ron%oint where the two curves cross gives the equilibrium edge sepa-
€ Innér eage 1o the outer oneé has several contribulionaeion within our variational two-strip model. The approximations

Some are conveniently expressed in termg©f), the en- 504 in our calculation of the exchange-correlation energy are not
ergy per particle in a homogeneous QH state of filling factora|iqg for strip separations much smaller than the magnetic lehgth

y in the presence of a uniform coplanar neutralizingang the crossing of the curves at the smaller valug{gt-y 9 is
background”’ Hartree and exchange-correlation contribu-ynphysical. The other crossing occurs in a regime where our ap-
tions to the energy change are treated separately in the cglroximations apply. From the point of crossing we conclude that
culation. The essence of the energetics at the edge can lge1.7. At this value ofd, the exchange-correlation energy gain is
understood by the following simple argument. First we re-nearly constant and the electrostatic-energy-cost curve is nearly lin-
move a hole from the edge of the inner strip which is in aear. From its slope we obtain~0.24?/(et).

fractional QH state of filling factor +v. The loss of

exchange-correlation energy (1~ v)|. Adding this hole  This simple picture requires a number of modifications

to the edge of the outer strip gives a gain in exchangeyhich are detailed in Appendix B but, as illustrated for

correlation energy which is close [¢(1)|, provided thatthe  _5/3'in Fig. 4, these have little quantitative importance.
width of the outer strip is larger than the magnetic length.

(Since the outer strip is a simple filled-Landau-level state, it

is easy to incorporate finite-thickness corrections to its addiy, pscuUsSSION OF EXPERIMENTAL IMPLICATIONS

tion energy, and we do so as detailed in Appendix&nce

[£(1—»)|<|Z(1)|, there is a net gain inexchange- We have determined the conditions under which it is pos-
correlation energy when transferring holes from the innersible to excite and observe two counterpropagating EMP
strip to the outer one in that situation. This gain is balancedvave packets at the edge of a QH sample that is at filling
by the increase ielectrostaticenergy that comes about due factor v=1—1/m. It is important that the geometry of the
to the existence of the dipolar strip of charge; see Fig. 1. Theample allows for an external potential that is different at the
hole that is being transferred is brought closer to the outepositions of the inner and outer edges. According to the cal-
part of the dipolar strip which electrostatically repels holes.culation of the preceding section, the separatia@f the two
The separation of the two edges in the state where the gain #trips for filling factorv=2/3 isd,z~1.7. In typical mag-
exchange-correlation energy for the hole transfer is exactlyetic fields, this corresponds th,;~20 nm. For a top gate,
offset by the loss in electrostatic energy is the ground-statsignificant differential coupling to inner and outer edges
separationd. The electrostatic energy cost of hole transferwould require that the distance to the gate not be too much
increases linearly witld for d>1. Comparing with Eq(26),  larger than~20 nm and that its edge be positioned relative
we see that, in this approximation, the slope of the curve foto the QH edge with an accuracy of better tha20 nm.

the electrostatic contribution to the transfer energds/I. Both these conditions appear to be realizable.
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The result we have obtained for the EMP wave-packeedges, 1D electron-gas models are not appropriate. The ex-

group velocity is citation spectrum will have many collective mod&sand
each of these will, in general, decay into incoherent particle-
hole excitations at a finite rate. If a sample with a sharp edge
can be fabricated, the present calculations suggest that group
velocities of the modes are slow enough to permit the use of

27 capacitive coupling to detect wave-packet evolution, and fast
enough to permit several orbits around a macroscopic sample

whereq® is the characteristic wave vector of the dominantto occur before the wave packet is dissipated through its

charge fluctuation in this wave packet. Specializing @)  coupling to bulk phonon modes of the host semiconduttor.

to the case of the dielectric environment of typical 2D

electron systems in GaAs, taking a QH sample with

v=2/3, and assumingy®’L<L/I, we find that vy~ ACKNOWLEDGMENTS

70xIn[L/(50)] wm/ns. The phonon wave packet moves in  y js 5 pleasure to thank R. C. Ashoori, S. Conti, G. Ernst,
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two wave packets is inversely proportional to the ratio of

their respective VelOCities; the phonon wave paCket will APPENDIX A: LANDAU-SILIN-TYPE SEPARATION

therefore be much more narro@n its 1D extension along OF COULOMB AND SHORT-RANGE INTERACTIONS
the edge because it is much slower than the EMP wave

packet. We expect the numerical group-velocity estimates In this section, we show briefly how the separation of the
given here to be realistic for the case of a sharp edge with ag@oulomb and short-range pieces of the interaction leads to
external potential sufficiently similar to that produced by theEgs. (10).

coplanar neutralizing charge used in these microscopic cal- We start from the ground state of an edge which has a
culations. It appears likely to us that sharp edges will occugdensity profile as depicted schematically in Fig. 1. Our goal
only in specially prepared QH samples, for example in thosés to find the energ)ysE it costs to make an excitation that
prepared using a cleaved-edge overgrowth techrid®  |eads to a deviatio®n22(r) from the ground-state density
remark that this technique appears to be compatible withprofile. To separate long-range and short-range contributions
side-gate-based capacitive coupling which we believe wilko SE, we relate our physical system to a fictitious system
produce the differentiation necessary to excite the phonowhich has only short-range forces, because any excitation
mode_s. The microscopic formalism developed in this work5nzo(;) is simultaneously followed by an adjustment of the
can, in principle, be elaborated to model the details of %ack d ch densitnZ2(P) that rest 1D local
specific sample and arrive at precise predictions for the rela2®® grcun ¢ _arge ensigngg(r) tha restores i oca
tive velocities of the two modes. The microscopic electronicheutrality. Obviously, the amount of energf that it takes
structure at smooth edges is presently not well understbod,to make an excitatiordn?°(r) in the fictitious 1D-locally
even for the simpler case where the bulk filling factor is anneutral system differs frondE by the energy necessary for
integer. Nevertheless, it appears clear that, for very smoothadjusting the background charge:

e? 1

vP=—p— —lIn| 16a3Y (d)gd—zam') +1
eh T A 2|

~ e? 1 . (1 R R R R
SE=SE+ —f dzrdzr’TénﬁgD(r)|—5n§g(r’)+n§g'3(r’)— on2(r")—n?(r") . (A1)
€ |r —r’ | 2
|

The first term in the curly brackets of EGA1) comes from e? r d?rd?r’ R R )
the self-interaction of the adjusted piece of the background, 5Mbg::_f ﬁ5n§g’(r)[n2D(r’)—nﬁg(r’)].
the second term is the interaction energy of the adjusted €J Jr—r’'|
background piece with the ground-state background-charge (A2)

distribution denoted bylﬁg(F), the third one is the interac-

tion energy of the charged electronic excitation with the ad-The term Suyg, being linear in the charge distribution re-
justed piece of the background, and the last term comes fromated to the excitation, contributes only to the chemical po-
the interaction of the electronic ground-state charge distributential and does not affect the generalized TL model Hamil-
tion n2°(r) with the adjusted background piece. We arrivetonian because the latter is derived from termstnthat are
readily at Eqs(10) if we define quadratic inén?® and 5n§g.
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APPENDIX B: CALCULATION OF SHARP-EDGE The constant termK},) in this hole Hamiltonian is unimpor-
CHARACTERISTIC PARAMETERS tant, but the correction to the single-particle eneggylays

We start with the Hamiltonian of 2D interacting electrons an essential role in the edge physics:

in the lowest Landau level. After performing the transforma- 1

tion of particle-hole cqnjugatlon, we work con5|§tently in the §k==—2 [Vo(k—p) = Vi p(0)]. (B4)

Fock space oholeswith single-hole states available far L%

=<Kgg. This truncation of the Hilbert space is permitted as

long as states witk equal to or in excess &, are always We now evaluate the energy of states where the holes

occupied by holes. The validity of this assumption for statesorm an incompressible bulk state with filling factor% in

close to the sharp-edge ground state can be verified at thge strip for whichy()<y<o and form a filled-Landau-

end of the calculation. level state in the strip for which9y<y(®. The inner strip
Particle-hole conjugation can be performed easily usingontributes nonzero occupation numberslfgikg). Except

the formalism of second quantization. Starting from any op-|ose to the edg¥ Bthese states are occupied with probabil-

erator expressed in terms of electron creation and annihilay, 1 —,, The outer strip contributes nonfluctuating integer

tion operators, it is possible to derive its particle-hole CO”jU'occupation numbers for states Wkﬁ’)sks kro. Note that
gate by replacing the electron’s creation operatc,‘:r

L L we have adopted a notation whed€) is the inner edge of
(annihilation operatoc,) by the hole’s annihilation operator P d(é g

X K , N ) the outer hole strip. Low-energy excitations can occur at this
hy (creation operatoh,). Consider the Hamiltonian for in- o446 |n contraske, is the outer edge of the outer hole strip.

teracting glectrons ip the lowest Landau level with an exterrpig edge is formed by the Hilbert-space truncation and does
nal confining potential present: not support physical excitations. Our calculations will dem-
onstrate that states of this type are locally stable. We cannot
envisage alternatives and believe that these states, and their
edge-wave excitations, are the only states in the low-energy
0_ + portion of the Hilbert space for sharp edges.
H _; EKkCkCio (B1b) Since the states we consider have fixed numbers of par-
ticles in inner and outer strips, it is useful to separate the hole
Hamiltonian into parts as follows:

H=HC+H™M, (Bla

1

H.ntzzk%q V(K= P)Cls oChCp+ k- (Blo) _

o H* =E,+HW+H©+ 5H. (B5a)
The single-electron dispersiar, is due entirely to the exter- i . . : : .
nal potential confining the electrons in the QH sample, be:rhe 'FermH(') describes the inner strip of !nteractlng holes
cause all electrons in the lowest Landau level have the sanfd@t IS assumed to be cor.1f|r.1ed by a “”'jorm background
kinetic energy irrespective of their quantum numkeWe neutralizing for h?_l)es [density: (1-»)/(27%)] extending

H I .

choose the confining potential to be due to a uniform backOVer the intervay™’<y<ee:
ground charge that would exactly neutralize the electron
charge if each lowest-Landau-level orbital were occupied H) =

: 1
(Ot 4 = _mhtht
with probability v=1—1/m: 2 el’hiher oL > )Vq(k PINhp ghphiq

k=<k{) k,p=k!

q
B5b
ex=—v > Vo(k—p). (B2) (B5h)
P<kpo

with
Here,Vy(k—p) is the two-body matrix element of the Cou-
lomb interaction in the Landau-gauge representation of
single-particle states in the lowest Landau level. Explicit ex-
pressions fol,(k—p) can be found, e.g., in Refs. 11 and
17. Replacing the electron operators by hole operators a
normal ordering yields

. 1
el'== (L= 2 Vo(k—p).
psk(')
F
Nehis strip is presumed to be in the fractional-QH state at
filling (1 —v). As it is infinite, the energy per particle in the
inner strip assumes its thermodynamic vafug(1—v)~

_ 0 int
H*=En+Hy+Hy', (B3a  _0.41e%/(el). The contributionH(® is for the outer strip of
holes, for which a neutralizing background with density
1 1/(271%) is assumed to extend in the region=@<y(©.
Eh_zk ekt Egk)’ (B3b) That strip is in the QH state with filling factor equal to 1.

1
Hi= =2 (et &0hihy, B39 HO=2X Sﬁo)hlhkﬁLi

o) 2 Vq(k_ p)hlthrththrq
k k=kg

k,p= kfzo)
q
(B5¢)

‘ 1
t_ Tt
HE' =202, Vak- Py ahohceg. B3
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14 T T T T

1
ell=—T 2_Vo(k=p).

p=K(© 12 °F

. . . 1o}
The states we consider have no fluctuations in the quantum

numbers on whictH(®) operates. Since the Hartree interac- 08 |

tion is canceled by the background, the contributiorHé? =
to the energy is simply the exchange energy of the occupied N; 0.6 ——. potential due to exchange—loss with vacuum ]|
orbitals in the outer _Stl‘ip. ~ o4 k="~ electrostatic potential from dipolar strip

Wwith the termsH® and H(® defined above, EqB5a) total external potential for holes
constitutes the definition afH. The latter encompasses one- 02 b
body terms, including the part from the external potential -~
due to residual background charge not accounted for in 00 pmm e ,/ ]
HO+H®  and two-body terms coming from interactions 02 \ \ it
between holes from different strips. Tlgg=0 interaction 710 8 6 4 2 0
terms can be grouped with the one-body term. The one-body y ()
contribution tosH also contains the exchange contribution ) B
to &. In total, we have FIG. 5. External potential for holes. In addition to the electro-

static contributior{dashed curve; cf. EGB6d)] resulting from the
off 440 dipolar strip of charge, there is an additional contribution to the
oH=oH 1-body ™ 6H2-bodyv (B6a) external potentia[dot-dashed curve; cf. EqB6e)] which is en-
tirely due to particle-hole conjugation in a finite system. This sec-
ond contribution attracts holes to the physical edge of the sample
oH gffbod = 2 58khlhk (B6b) and is essential for the phase separation into an inner and outer hole
y ' . : . .
3 strip. The electrostatic potential was calculated for filling faator
=2/3 and a separatioyf!) —y(©=d,,;~ 1.7 of the inner and outer
where edges.

number distribution function at the inner edge. However, as
we comment below, corrections to E@6d) are small, and
we neglect them.
H v —-v Now consider the difference in energy between a final
e = 2 L . E T Vo(k=p), state and an initial state which differ by the transfer of one
p=k = k'<p<k? hole from the inner strip to the outer on&ee Fig. 3. We
(B6d)  find that

8= el + def (B60)

keo— k!

1
F
Sey ==[% Vic-p(0). (BGe) 8Efn— OEin=—{(1-v)~ T k§=‘,0 Vi(0) + SE"eS

B7
The two terms displayed in Eq&86d) and (B6e) represent ] ) . ) (7
the electrostatic and exchange contributions to the externdihe first term in Eq(B7) is the correlation energy we have
potential felt by the holes. In Fig. 5, we show their spatialt® Pay to remove the hole from the inner strip, the second is
variation. Note thatse[ appears because of particle-hole the exchange energy we gain by putting the hole at the edge
conjugation:; it represents the repulsive exchange interactiofif the outer strip, while the final term contains both the one-
between holes and the vacuum which is weaker at the edde®dy and two-body contributions from the residual interac-
of the system and attracts holes to the physical boundary ¢fon SE™ The one-body piece i§e () — e\ () which can
the QH sample. Apart from this term and the constapt  be interpreted as the change in the self-consistexternal
the above Hamiltonian could also describe two stripsle€-  +Hartreg potential felt by the hole which is being trans-
tronsin the v=1/m andv=1 states, respectively. This term ferred. If we neglect correlations between holes from differ-

is responsible for the qualitative distinction between the edg€nt strips, the two-body residual term consists onlyzt
structures forvr=1—1/m and v=1/m bulk fractional QH — 7;&0), where we denote the exchange energy for a hole
states. Theg#0 two-body terms give the energy contribu- interacting at a distancke with the inner/outer strips by the
tion due to exchange and correlation between electrons isymbolsz(’ and (%), respectively. Hence we have
different strips.

Close to the edge of a QH system that has a filling factor SEres= Se (o) — Se i+ 74— 9. (B8)
1/m with m=3,5,..., oscillations occur in the occupation
numbers of the lowest-Landau-level basis stdfes our Using the expressions
model of a QH edge at filling factar=1— 1/m, such oscil-
lations occur at the inner edge. The expression for the elec- . 1-v
trostatic contribution to the external potential which is given Mg =T > Vi -p(0), (B9a)
in Eq. (B6d) does not account for the true occupation- p=kg’
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o) 1 . To make progress analytically, we have derived a systematic
Mg =TT 2(0) Vi p(0), (B9D)  expansion of A" in the parameter[y{)—y{®]/I. The
P=ke asymptotic result in the limit of large separation of the two
which can be expected to be good for not-too-small distancegdges is
y{) -y =) 1712 we find SEg,— SEji=AN—AF,

ni ni
where 2 (i) _\/(0)
ec 1 yi' Yy
He = = _ _
AH=58;‘<F0)—5SES), (B103 A=— o —lvin(m)+ (A =v)n(1-v) =,
(B13)
E v
AF=(D)=f1-n)+ T > Vi(0). (B1Ob
k=k® k(D) which yields the analytical result far; as it is given in Eq.

. (21).
As noted above, our calculation &Ey,— SE;, neglects

contributions due to the oscillations occurring in the
occupation-number distribution functinfor holes at the
inner edge. Taken into account properly, these oscillations
would affectSE™®in essentially the same way as they affect

the energy per particle of the inner QH strip. In Ref. 38, the ) o
energy per particle for a filling factor equal to 1/3 was cal- Although we use 1D models to describe edge excitations,

culated for two different choices of the neutralizing back- i'F is important to realize that the electrons forming the frac-
ground: (a) a constant background-charge density that neutional QH sample move in 2D and, therefore, have a wave
tralizes the electron charge in the bulk, ahila background function that depends otwo coordinates. The part of the
that neutralizes the electron charge locally. The differencavave function depending on the transverse coordigtes
between the values of the energy per particle for the model&aussian with a width of the order of the magnetic lerigth
(a) and (b) corresponds to the correction to E@B6d) and  Hence, the transverse density profile., the variation of the
(B7) when the true occupation-number distribution function2D density perpendicular to the edge not sharp on scales
is used. This difference was foufidto be smaller than shorter than~I, even if the occupation-number distribution
0.000%?/(e€l). The error we make in our calculation 8™ function (ONDF) for the lowest-Landau-level basis states
is therefore three orders of magnitude smaller than the rewere sharp(as is the case, e.g., when the filling factor is
maining term in Eq(B7). equal to J. In this section, we consider the 2D aspect of edge

Expressions for the matrix elements which are derived foexcitations of fractional QH systems at the simple filling
the Landau gaud&* enable us to calculate the two contri- ¢ . ~_ oo g4 In particular, the profile

butionsA ™ andA”, at least numerically. In Fig. 4, we show of the 2D charge density perpendicular to the edge is calcu-
the result for filling factorv=2/3. The solid and dashed 9 Y perp o 9
lated for many-body states with edge excitations present. The

curves are the results fast and A, respectively. In par- ) > ) . )
. P y P results presented in this section were applied to the inner and
ticular, we used . o

outerhole strips that arise in the model of a sharp edge of a

APPENDIX C: TRANSVERSE DENSITY PROFILE
FOR EDGE EXCITATIONS

e2 1 (= fractional QH sample at filling factor=1—1/m, as dis-
Sepl=— O drx In|k|F(r,y/I,N1) cussed above in the bulk of this paper.
elm \2m) = The sample geometry considered here is the surface of a
(B11) semi-infinite cylinder, see Sec. Ill, which is occupied by

with the definitionsy:=[keo—k]I? (= coordinate perpen- electrons such that the filling factaris equal to the inverse
dicular to the edge, measured from the physical edge of thgf an odd integer. This sample therefore supports a single

sample towards the bulk\:=y{’—y{” (= separation of pranch of edge excitations which are, without loss of gener-

the inner and outer edges in the initial sjatnd ality, assumed to be right-going. The edge is locatey at
_ 2 =0, and the largest wave-vector label of lowest-Landau-
[k—y+ANvV] VSR )
F(k,y\)=(1—v)exp - ————— level states that are occupied in the ground state-isTo
2 avoid confusion, operators are indicated, in this section, by a
[k—y+(1—v)Nv]? caret.

—exp — 2 In a symmetric notation, and using our conventions for

the sample geometry, the second-quantized operator of the
[k—y]? 2D density in the lowest Landau level is
+vexp — 5 . (B12

. 1 exp{— (y—[ke—Kk]1%)%/12
nZD(XaY):E% exp{iqx}exp{—(ql)2/4}; A 7[71/':2| L }Cl+q/20k—q/2- (CY
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The operator of the 1D edge density is defined as the integral sn?°(x,y) = n(Z)D[X y+2m1260(x)/7] - n(Z)D(X y)

of Eq. (C1) over the transverse coordinatg from minus (C9)
infinity across the edge to a reference pgirtY >0, located
in the bulk: which implies that the 2D density profile for a state with an
v edge wavedp (x) present differs from the ground-state den-
pP(x) = j dyo(x,y). (C2) sity profile by ar|g|d transversg deformat~|onThe gmc?unt of
—o the transverse displacement igl250 (x)/v. Application of

is result to the inner and outer edges of a QH sample at
ing factor v=1—1/m immediately yields Eq(18).

To determine the parameters in the generalized TL Hamil-
tonian describing edge excitations for a QH system at filling

It is easy to see that the Fourier components of the 1D edg%‘I
density operatop'®(x) have the form

pi= exp{—(ql)2/4} > lCl i qoChoq2,  (C3a  factor v=1-1/m, we have to calculate the enerdf of
k Eqg. (10b) up to second order in the 1D edge-density fluctua-
where tions. For that purpose, we need the 2D density profile of Eq.
(C9) only up to first order indo(x), which reads then
I = ! fw dyexp{—(y—1%k)?/1%2}.  (C3b) 2.2
v )2, _ ' m
™A ey an?2(x,y) = —=—[a,ng°x,y)1se(x).  (C10

As we are interested in the long-wavelength limpigl only, v
the Gaussian prefactor in E(C38 will be dropped. In the | 3 sjtuation where the ONDF is a step function with a step
subspace of low-energy excitations, the Fourier components, , . ~ _ , .

~1D - ) ) o Of heightv atk=kg, one finds the analytical result
of p™(x) obey the familiar chiral-Luttinger-liquid commu-

tation relation$ )

7l exp(—y?/1?
1D ql— ~ &ynSD X!y): F(\/—yl )
~ - ~ v T
[Py ,p(l]D]=Vﬁ5q,q'- (CH
. o Equation (C12) is exact for a QH strip at a filling factor
Due to the incompressibility of the ground stato) of a  equal to 1. It also applies to the density profile of the neu-
fractional QH system at filling factor, the operatorp'%  tralizing background we have chosgee Eq(B2)]. We can

(C1D)

satisfy then deduce the form factors to be used in Efj$); they are
pWe)=0 forg>0. (C5) . 2ml2 _
FOW)=1—an’(xy-y"),  (Cl2a

We pose the following problem: Given a stag) in the
edge-excitation subspace that has a 1D density fluctuation

s0(x) along the edge, what is the full 2D density profile for 10
this state? At first sight, this seems like a question impossible R Q—
to answer: How can we deduce the 2D density from its inte- L Y
gral over the transverse coordinate? Enabling us to solve the 05y
above problem is the fact that the low-lying excitations in the 8
~ Q
system are created by the operatpgg for positiveq. The &
edge-density fluctuatiodo (x) determineg ) uniquely to g 00
be a coherent stateof the form 2
2 80 p~1p 0.5 : . : : : :
P)y=exp =— >, HID ). (C6) 0 8 6 4 2 0 =2
) TR y ()
Here, 60, is a Fourier component of the 1D density fluctua-  FIG. 6. Accounting for the full 2D density profile in our calcu-
tion: lation of the Coulomb contributionjE, to the edge-mode energy
. requires the introduction of appropriate form factd$)(y) and
i F©)(y), for the inner and outer hole strip6See Sec. lll A. As
= pX :
5QP jo dxeP*de(x). (C7) shown in Appendix C, these form factors are related to the deriva-

tive of the 2D ground-state density profile in the transverse direc-

It is then Straightforward to calculate the 2D density ﬂUCtUa'[ion_ It is possib|e to determiné(o)(y) ana|ytica||y[dotted curve,
tion on?°(x,y) associated with the states), which is de-  see Eq(C12b] because there are no fluctuations in the occupation
fined by numbers for holes in the outer strip which has a filling factor equal
. to 1. The situation is more complicated for the inner hole strip

on?P(x,y) = (y|n?°(x,y)| ) — n3P(x,y), (C8  which has a fractional filing factor equal to M/ with m

_ o =3,5,... . With the solid curve, we show the form factBf(y)

where we denote the 2D density profile in the ground statg, m=3 obtained from the ground-state density profile that has

by n2P(x,y) :=(¥o|n?®(x,y)|¥,). The result is been determined numerically in Ref. 38.
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—_v2/12

FO(y)= %:l”)’ (C12b
_\v2/12

FO(y)= % (C129

We have denoted the 2D ground-stéiae density for the
inner strip byn{’. At present, it is not possible to give a
closed-form analytical result fdF()(y). So far, the 2D den-
sity profile and ONDF for fractional QH systems with
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fers from F(O)(y)EF(b)é ) in a more significant way be-
cause oscillations appeér®in the ONDF and the 2D den-
sity profile close to the edge of &= 1/m QH sample when
m>1. In the long-wavelength limit, all these effects are
taken into account in the correction factdfg andY . [See
Egs. (17).] To compute actual numbers for the experimen-
tally most relevant case af=2/3, we have taken the data
reported in Fig. 3 of Ref. 38 for the 2D ground-state density

profile of a fractional QH system at=1/3 and derived the
corresponding form factdf()(y). The result is given in Fig.
6, where we also sho®(®)(y) as it is determined from Eq.

=1/3, 1/5, and 1/7 have only been obtained numericall(C12h.

for small numbers of particle¥:®® It is established that
the ONDF in fractional QH systems at the simpleml/
filling factors is not a step functioh.With a broadened
ONDF at the inner edge, we also expdet)(y) to be
broader tharF(®)(y). However, the form factoF ()(y) dif-

Using the analytical expressions #6f°)(y) = F(®)(y) and
the numerical result foF()(y) as shown in Fig. 6, we de-
termine the wave-vector-independent quantifié%), A9,
andA®) for the case ofl=d,;;~1.7. This yields Eqs(17)
with the quoted values of the correction factors.
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