1,527 research outputs found

    "Orphan" γ\gamma-ray Flares and Stationary Sheaths of Blazar Jets

    Full text link
    Blazars exhibit flares across the entire electromagnetic spectrum. Many γ\gamma-ray flares are highly correlated with flares detected at longer wavelengths; however, a small subset appears to occur in isolation, with little or no correlated variability at longer wavelengths. These "orphan" γ\gamma-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. Macdonald et al. have developed the Ring of Fire model to explain the origin of orphan γ\gamma-ray flares from within blazar jets. In this model, electrons contained within a blob of plasma moving relativistically along the spine of the jet inverse-Compton scatter synchrotron photons emanating off of a ring of shocked sheath plasma that enshrouds the jet spine. As the blob propagates through the ring, the scattering of the ring photons by the blob electrons creates an orphan γ\gamma-ray flare. This model was successfully applied to modeling a prominent orphan γ\gamma-ray flare observed in the blazar PKS 1510-089. To further support the plausibility of this model, Macdonald et al. presented a stacked radio map of PKS 1510-089 containing the polarimetric signature of a sheath of plasma surrounding the spine of the jet. In this paper, we extend our modeling and stacking techniques to a larger sample of blazars: 3C 273, 4C 71..01, 3C 279, 1055++018, CTA 102, and 3C 345, the majority of which have exhibited orphan γ\gamma-ray flares. We find that the model can successfully reproduce these flares, while our stacked maps reveal the existence of jet sheaths within these blazars.Comment: 19 pages, 27 figures, accepted for publication in ApJ. arXiv admin note: text overlap with arXiv:1505.0123

    Pathfinder cells provide a novel therapeutic intervention for acute kidney injury

    Get PDF
    Pathfinder cells (PCs) are a novel class of adult-derived cells that facilitate functional repair of host tissue. We used rat PCs to demonstrate that they enable the functional mitigation of ischemia reperfusion (I/R) injury in a mouse model of renal damage. Female C57BL/6 mice were subjected to 30 min of renal ischemia and treated with intravenous (i.v.) injection of saline (control) or male rat pancreas-derived PCs in blinded experimentation. Kidney function was assessed 14 days after treatment by measuring serum creatinine (SC) levels. Kidney tissue was assessed by immunohistochemistry (IHC) for markers of cellular damage, proliferation, and senescence (TUNEL, Ki67, p16ink4a, p21). Fluorescence in situ hybridization (FISH) was performed to determine the presence of any rat (i.e., pathfinder) cells in the mouse tissue. PC-treated animals demonstrated superior renal function at day 14 post-I/R, in comparison to saline-treated controls, as measured by SC levels (0.13 mg/dL vs. 0.23 mg/dL, p<0.001). PC-treated kidney tissue expressed significantly lower levels of p16ink4a in comparison to the control group (p=0.009). FISH analysis demonstrated that the overwhelming majority of repaired kidney tissue was mouse in origin. Rat PCs were only detected at a frequency of 0.02%. These data confirm that PCs have the ability to mitigate functional damage to kidney tissue following I/R injury. Kidneys of PC-treated animals showed evidence of improved function and reduced expression of damage markers. The PCs appear to act in a paracrine fashion, stimulating the host tissue to recover functionally, rather than by differentiating into renal cells. This study demonstrates that pancreatic-derived PCs from the adult rat can enable functional repair of renal damage in mice. It validates the use of PCs to regenerate damaged tissues and also offers a novel therapeutic intervention for repair of solid organ damage in situ

    Scotland Registry for Ankylosing Spondylitis (SIRAS) – Protocol

    Get PDF
    Funding SIRAS was funded by unrestricted grants from Pfizer and AbbVie. The project was reviewed by both companies, during the award process, for Scientific merit, to ensure that the design did not compromise patient safety, and to assess the global regulatory implications and any impact on regulatory strategy.Publisher PD

    Prophylactic balloon angioplasty fails to prolong the patency of expanded polytetrafluoroethylene arteriovenous grafts: Results of a prospective randomized study

    Get PDF
    AbstractPurpose: Maintenance of hemodialysis access grafts represents an enormous social and clinical problem. Current grafts and graft salvage techniques are inadequate. Consequently, there has been increasing interest in the use of minimally invasive catheter techniques to prophylactically treat stenoses in functioning arteriovenous grafts. Prophylactic balloon angioplasty has been widely suggested as prolonging assisted primary patency. We have performed a prospective randomized trial to compare patients who underwent percutaneous transluminal angioplasty (PTA) for graft stenoses >50% with a control group that received no intervention. Our hypothesis was that to be efficacious a minimal benefit of 20% prolongation in patency would be necessary.Methods: Color flow duplex scanning was used to detect >50% stenoses in functioning expanded polytetrafluoroethylene grafts. Patients were then subjected to confirmatory angiographic evaluation. Those who had angiographic stenoses >50% were randomized to balloon angioplasty or observation. Patients were followed-up with duplex scanning every 2 months. Statistical analysis was performed using the Kaplan-Meier technique. Although demographically the patient groups were well matched, there were more prior interventions and concurrent central stenoses in the treatment group. Outcomes were graft thrombosis, graft dysfunction that precluded dialysis, and six or more PTA procedures within 18 months.Results: In the treatment and observation groups, the 6-month patency rates were 69% ± 7% and 70% ± 7%, respectively. The 12-month patency rates for the treatment and observation groups were 51% ± 6% and 47% ± 4%, respectively. There was no significant difference between these two groups ( p = 0.97), with an 80% confidence limit for detection of a difference greater than 20%.Conclusions: This study demonstrates that a generic approach of PTA to treat all polytetrafluoroethylene grafts with stenoses >50% does not prolong patency and cannot be supported

    The magnetic field structure in CTA 102 from high-resolution mm-VLBI observations during the flaring state in 2016-2017

    Full text link
    CONTEXT: Investigating the magnetic field structure in the innermost regions of relativistic jets is fundamental to understanding the crucial physical processes giving rise to jet formation, as well as to their extraordinary radiation output up to γ-ray energies. AIMS: We study the magnetic field structure of the quasar CTA 102 with 3 and 7 mm VLBI polarimetric observations, reaching an unprecedented resolution (∼50 μas). We also investigate the variability and physical processes occurring in the source during the observing period, which coincides with a very active state of the source over the entire electromagnetic spectrum. METHODS: We perform the Faraday rotation analysis using 3 and 7 mm data and we compare the obtained rotation measure (RM) map with the polarization evolution in 7 mm VLBA images. We study the kinematics and variability at 7 mm and infer the physical parameters associated with variability. From the analysis of γ-ray and X-ray data, we compute a minimum Doppler factor value required to explain the observed high-energy emission. RESULTS: Faraday rotation analysis shows a gradient in RM with a maximum value of ∼6 × 104⁴ rad m⁻² and intrinsic electric vector position angles (EVPAs) oriented around the centroid of the core, suggesting the presence of large-scale helical magnetic fields. Such a magnetic field structure is also visible in 7 mm images when a new superluminal component is crossing the core region. The 7 mm EVPA orientation is different when the component is exiting the core or crossing a stationary feature at ∼0.1 mas. The interaction between the superluminal component and a recollimation shock at ∼0.1 mas could have triggered the multi-wavelength flares. The variability Doppler factor associated with such an interaction is large enough to explain the high-energy emission and the remarkable optical flare occurred very close in time.Accepted manuscrip

    Spatially resolved origin of mm-wave linear polarization in the nuclear region of 3C 84

    Full text link
    We report results from a deep polarization imaging of the nearby radio galaxy 3C 84 (NGC 1275). The source was observed with the Global Millimeter VLBI Array (GMVA) at 86 GHz at an ultra-high angular resolution of 50μas (corresponding to 250R). We also add complementary multi-wavelength data from the Very Long Baseline Array (VLBA; 15 & 43 GHz) and from the Atacama Large Millimeter/submillimeter Array (ALMA; 97.5, 233.0, and 343.5 GHz). At 86 GHz, we measure a fractional linear polarization of ~ 2% in the VLBI core region. The polarization morphology suggests that the emission is associated with an underlying limb-brightened jet. The fractional linear polarization is lower at 43 and 15 GHz (~ 0.3-0.7% and < 0.1%, respectively). This suggests an increasing linear polarization degree towards shorter wavelengths on VLBI scales. We also obtain a large rotation measure (RM) of ~ 10⁵⁻⁶ rad/m² in the core at ≳43 GHz. Moreover, the VLBA 43 GHz observations show a variable RM in the VLBI core region during a small flare in 2015. Faraday depolarization and Faraday conversion in an inhomogeneous and mildly relativistic plasma could explain the observed linear polarization characteristics and the previously measured frequency dependence of the circular polarization. Our Faraday depolarization modeling suggests that the RM most likely originates from an external screen with a highly uniform RM distribution. To explain the large RM value, the uniform RM distribution, and the RM variability, we suggest that the Faraday rotation is caused by a boundary layer in a transversely stratified jet. Based on the RM and the synchrotron spectrum of the core, we provide an estimate for the magnetic field strength and the electron density of the jet plasma.Accepted manuscrip

    Global spectrum fluctuations for the β\beta-Hermite and β\beta-Laguerre ensembles via matrix models

    Full text link
    We study the global spectrum fluctuations for β\beta-Hermite and β\beta-Laguerre ensembles via the tridiagonal matrix models introduced in \cite{dumitriu02}, and prove that the fluctuations describe a Gaussian process on monomials. We extend our results to slightly larger classes of random matrices.Comment: 43 pages, 2 figures; typos correcte
    corecore