17 research outputs found

    Comparing Presenting Clinical Features in 48 Children With Microscopic Polyangiitis to 183 Children Who Have Granulomatosis With Polyangiitis (Wegener's) : an ARChiVe Cohort Study

    Get PDF
    OBJECTIVE: To uniquely classify children with microscopic polyangiitis (MPA), to describe their demographic characteristics, presenting clinical features, and initial treatments in comparison to patients with granulomatosis with polyangiitis (Wegener's) (GPA). METHODS: The European Medicines Agency (EMA) classification algorithm was applied by computation to categorical data from patients recruited to the ARChiVe (A Registry for Childhood Vasculitis: e-entry) cohort, with the data censored to November 2015. The EMA algorithm was used to uniquely distinguish children with MPA from children with GPA, whose diagnoses had been classified according to both adult- and pediatric-specific criteria. Descriptive statistics were used for comparisons. RESULTS: In total, 231 of 440 patients (64% female) fulfilled the classification criteria for either MPA (n\u2009=\u200948) or GPA (n\u2009=\u2009183). The median time to diagnosis was 1.6 months in the MPA group and 2.1 months in the GPA group (ranging to 39 and 73 months, respectively). Patients with MPA were significantly younger than those with GPA (median age 11 years versus 14 years). Constitutional features were equally common between the groups. In patients with MPA compared to those with GPA, pulmonary manifestations were less frequent (44% versus 74%) and less severe (primarily, hemorrhage, requirement for supplemental oxygen, and pulmonary failure). Renal pathologic features were frequently found in both groups (75% of patients with MPA versus 83% of patients with GPA) but tended toward greater severity in those with MPA (primarily, nephrotic-range proteinuria, requirement for dialysis, and end-stage renal disease). Airway/eye involvement was absent among patients with MPA, because these GPA-defining features preclude a diagnosis of MPA within the EMA algorithm. Similar proportions of patients with MPA and those with GPA received combination therapy with corticosteroids plus cyclophosphamide (69% and 78%, respectively) or both drugs in combination with plasmapheresis (19% and 22%, respectively). Other treatments administered, ranging in decreasing frequency from 13% to 3%, were rituximab, methotrexate, azathioprine, and mycophenolate mofetil. CONCLUSION: Younger age at disease onset and, perhaps, both gastrointestinal manifestations and more severe kidney disease seem to characterize the clinical profile in children with MPA compared to those with GPA. Delay in diagnosis suggests that recognition of these systemic vasculitides is suboptimal. Compared with adults, initial treatment regimens in children were comparable, but the complete reversal of female-to-male disease prevalence ratios is a provocative finding

    The membrane composition defines the spatial organization and function of a major Acinetobacter baumannii drug efflux system

    Get PDF
    Acinetobacter baumannii is one of the world’s most problematic nosocomial pathogens. The combination of its intrinsic resistance and ability to acquire resistance markers allow this organism to adjust to antibiotic treatment. Despite being the primary barrier against antibiotic stress, our understanding of the A. baumannii membrane composition and its impact on resistance remains limited. In this study, we explored how the incorporation of host-derived polyunsaturated fatty acids (PUFAs) is associated with increased antibiotic susceptibility. Functional analyses of primary A. baumannii efflux systems indicated that AdeB-mediated antibiotic resistance was impacted by PUFA treatment. Molecular dynamics simulations of AdeB identified a specific morphological disruption of AdeB when positioned in the PUFA-enriched membrane. Collectively, we have shown that PUFAs can impact antibiotic efficacy via a vital relationship with antibiotic efflux pumps. Furthermore, this work has revealed that A. baumannii’s unconditional desire for fatty acids may present a possible weakness in its multidrug resistance capacity. Importance: Antimicrobial resistance is an emerging global health crisis. Consequently, we have a critical need to prolong our current arsenal of antibiotics, in addition to the development of novel treatment options. Due to their relatively high abundance at the host-pathogen interface, PUFAs and other fatty acid species not commonly synthesized by A. baumannii may be actively acquired by A. baumannii during infection and change the biophysical properties of the membrane beyond that studied in standard laboratory culturing media. Our work illustrates how the membrane phospholipid composition impacts membrane protein function, which includes an important multidrug efflux system in extensively-drug-resistant A. baumannii. This work emphasizes the need to consider including host-derived fatty acids in in vitro analyses of A. baumannii. On a broader scope, this study presents new findings on the potential health benefits of PUFA in individuals at risk of contracting A. baumannii infections or those undergoing antibiotic treatment.Maoge Zang, Hugo MacDermott-Opeskin, Felise G. Adams, Varsha Naidu, Jack K. Waters, Ashley B. Carey, Alex Ashenden, Kimberley T. McLean, Erin B. Brazel, Jhih-Hang Jiang, Alessandra Panizza, Claudia Trappetti, James C. Paton, Anton Y. Peleg, Ingo Köper, Ian T. Paulsen, Karl A. Hassan, Megan L. O’Mara, Bart A. Eijkelkam
    corecore